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Outline

• Overview of scientific research methods

• National efforts to accommodate the rising AI need

• Introduction to artificial intelligence, machine learning, deep 
learning

• Hands-on with Hurricane Harvey Damage Assessment



The Progression of the Scientific Method

Scientific knowledge at scale
AI-generated hypotheses
Autonomous testing

Empirical 
Science

Observation 
Experimentation

1st Paradigm

Theoretical 
Science

Scientific Laws in 
Physics, Chem, 
and others

2nd Paradigm

Computational 
Science

3rd Paradigm

Simulations
Molecular Dynamics
Mechanistic Models

Big Data-driven 
Science

4th Paradigm

Big data, machine learning
Patterns, anomalies
Visualization

Increasing speed, automation, and scale

Credits: Ian T. Foster, UChicago



ML/DL in Science not So Long Ago

Data Analytics

Classification

Regression

Clustering

Dimensionality 
Reduction

Inverse Problems

Model
Reconstruction

Denoising

Parameter
Estimation

Surrogate Models

Approximate
Expensive

Simulations

Fill in Missing
Models in

Simulations

Approximate
Experiments

Design and Control

Optimize Design 
of Experiments

Control 
Instruments

Navigate State
Spaces

Learn from 
Sparse Rewards

Credit: Kathy Yelick, in Monterey Data Conference, 2019



ML/DL in Science not So Long Ago

Storage & Archiving

Telescopes,
Edge Devices

Controller

Predictions, e.g., 
transient events

Model Serving

Model

Model Training

Processed 
Data

Data Processing

Raw Data

Actions



ML/DL in Science not So Long Ago

Storage & Archiving

Telescopes,
Edge Devices

Controller

Predictions, e.g., 
transient events

Model Serving

Domain Data

Foundation Model 
Training

ImageNet-1K, JFT-3B,

Open Images, ALIGN,

Wikipedia, PileData Processing

Raw Data

Actions

Model Adaptation
Model



Traditional ML                      Foundation models

Credits: Ian T. Foster, UChicago



Test scores of AI 
systems on 
various 
capabilities

AI system capabilities are increasing rapidly

https://contextual.ai/plotting-progress-in-ai/ 
https://OurWorldInData.org/artificial-intelligence

Human performance
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https://contextual.ai/plotting-progress-in-ai/
https://contextual.ai/plotting-progress-in-ai/
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence


The scientific method remains slow and labor-intensive

Credits: Ian T. Foster, UChicago



Despite acceleration of some steps via HPC etc.

Credits: Ian T. Foster, UChicago



Extraction, integration and 
reasoning with knowledge 
at scale

Tools help identify new 
questions based on needs 
and gaps in knowledge

Machine representation of 
knowledge leads to new 
hypotheses and questions

Generative models 
automatically propose 
new hypotheses that 
expand discovery space

Robotic labs automate 
experimentation and bridge 
digital models and physical 
testing

https://doi.org/10.1038/s41524-022-00765-z 

Pattern and anomaly detection 
integrated with simulation and 
experiment extract new insights

Hypothesize

Test

Study

Report Assess

Question
Accelerated 

Scientific 
Method

Engage AI assistants to help overcome bottlenecks

Credits: Ian T. Foster, UChicago

https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
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https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z


Foundation Model Training is Expensive

• Llama 3.1 405B takes 16,384 H100 GPUs for 2 months
• OPT-175B takes 1,024 A100 GPUs for 2 months
• OpenFold takes 128 A100 GPUs for 11 days
• GPT-NeoX 20B takes 96 A100 GPUs for 30 days
• Almost all popular large foundational models leverage 

transformers



Industry Investment in AI 
Cyberinfrastructure



National Investment in AI 
Cyberinfrastructure

• To accommodate the increasing need of HPC for AI, the US 
government has heavily invested in supercomputers:
• TACC Horizon, O(1000) GPUs, to deploy in 2026, funded by NSF LCCF
• NERSC Perlmutter, +7,000 Nvidia A100s, deployed in 2021
• ALCF Polaris, +2,000 NVIDIA A100s, deployed in 2022
• OLCF Frontier, 37,888 AMD MI250X GPUs, deployed in 2021
• ALCF Aurora, 63,744 Intel GPU Max Series, deployed in 2023



National Investment in AI 
Cyberinfrastructure



A Quick Overview of Deep Learning

• 1960s — Cybernetics
• 1990s — Connectionism + Neural Networks
• 2010s — Deep Learning

• Two key factors for the on-going renaissance
• Computing capability
• Data



A Quick Overview of Deep Learning



From Classical ML to DL
Feature Engineering Linear Regression:

𝑦 = 𝑤𝑥 + 𝑏, 

𝐿𝑜𝑠𝑠 = ෍

𝑖=1

𝑁

(𝑤𝑥𝑖 + 𝑏 − 𝑦′𝑖)2



neuron

From Linear Regression to Neural Networks

X

𝑦 = 𝑤𝑥 + 𝑏

𝑎 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑦)



From Linear Regression to Neural Networks

neuron

𝑦 = 𝑤𝑥 + 𝑏

𝑎 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑦)

𝑦 = 𝑤𝑥 + 𝑏

Layer 0 Layer 1 Layer 2



From Linear Regression to Neural Networks

• Now we have labeled data
• We can calculate y and the error with label y’
• We can then update w2,0

• How can we update w1,0, w1,1, w1,2?

w2,0

w1,0

w1,1

w1,2



From Linear Regression to Neural Networks

• The back-propagation algoirithm
• 𝑊1,0 = 𝑊1,0 −  𝜆 ∗ 𝜕𝐿𝑜𝑠𝑠/𝜕𝑊1,0

• 𝜕𝐿𝑜𝑠𝑠/𝜕𝑊1,0 
=  𝜕𝐿𝑜𝑠𝑠/𝜕𝑦2,0 

∗  𝜕𝑦2,0/𝜕𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒1,0
 
∗

 
𝜕𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒1,0/𝜕𝑦1,0

 
∗

 
𝜕𝑦1,0/𝜕𝑊1,0

𝒚𝟏, 𝟎 = 𝒘𝟏, 𝟎 ∗ 𝑋0 +  𝑏1,0

w1,1

w1,2

𝒚𝟐, 𝟎 = 𝑤2,0 ∗ 𝑿𝟏 + 𝑏2,0

w1,0
𝑋0

4

4

3 2 1

3

2

1

𝑿𝟏, 𝟎 =
𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒆(𝒚𝟏, 𝟎)

𝑳𝒐𝒔𝒔 =  1/2 ∗  (𝒚𝟐, 𝟎 − 𝑦’)2
w2,0



From Linear Regression to Neural Networks

• Stochastic Gradient Descent
• Divides a labeled training dataset into two parts. E.g., 80% and 20%, 

referred as training and validation dataset, respectively

• Trains a neural network iteratively
• Takes a mini-batch of data, e.g., 64 items out of 2,048
• An epoch is 2048/64=32 iterations/steps

• Validates the model with validation dataset
• Monitors the training loss and validation metrics, e.g., training/validation accuracy

• How many epochs is enough?



Convolutional Neural Network

• What we just saw is a multi-layer perceptron (MLP) network
• If in any layer, there is a convolution operations, it is called 

convolutional neural network
• Often coupled with pooling operation

• Example applications:
• Image classification
• Object detection
• Autonomous driving

https://ikhlestov.github.io/pages/machine-learning/convolutions-types/



Recurrent Neural Network 

• Recurrent Neural Network is another typical neural network 
architecture, mainly used for ordered/sequence input

• RNNs provide a way of use information about Xt-i, …, Xt-1 for 
inferring Xt

• Example applications:
• Language models, i.e. auto correction
• Machine Translation
• Auto image captioning
• Speech Recognition
• Autogenerating Music



Transformer Network

• State-of-the-art operator
• Proposed by Google
• Attention Mechanism
• Fundamental in Large Language 

Models, e.g., BERT, GPT-3, 
chatGPT, Vision Transformer, 
AlphaFold



Generative Adversarial Network

https://pg-p.ctme.caltech.edu/blog/ai-ml/what-is-generative-adversarial-network-types



Deep Reinforcement Learning

https://skymind.ai/wiki/deep-reinforcement-learning



Notion Recap

• Neural Network Architecture
• Multi-layer Perceptron
• Convolutional Neural Network
• Recurrent Neural Network
• Transformer Network

• Activation, Loss, and 
Optimization
• Activation Function
• Loss Function
• Back-propagation
• Gradient Descent
• Stochastic Gradient Descent

• Training and Validating
• Training Dataset
• Validation/Test Dataset
• Training Accuracy
• Validation/Test Accuracy Training 

Loss
• Validation/Test Loss
• Epoch
• Iteration/Step



Deep Learning Software Stack

Programming PyTorch Torch 
Lightning

JAX TensorFlow MXNet

Distributed DeepSpeed torch.distrib
uted

torch.FSDP Accelerate ZeRO

Resource Management Slurm Kubernetes

Communication NCCL MPI Gloo

Interconnect NVLink Slingshot Infiniband RoCE



PyTorch

• You can compose a PyTorch program in four steps:
• Dataset Preparation
• Model Definition
• Optimizer Specification
• Training Instrumentation



PyTorch Dataset

• Dataset —> 
Dataloader

• PyTorch has built-in 
datasets, e.g., 
CIFAR10

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose

train_data = datasets.CIFAR10(root=“/tmp”, train=True, 
download=True, transform=ToTensor())

test_data = datasets.CIFAR10(root=“/tmp”, train=False, 
download=True, transform=ToTensor())

batch_size = 128

# Create data loaders.
train_dataloader = DataLoader(train_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)



PyTorch Model

• Inherits nn.Module

import torch
from torch import nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = Net().to(device)



PyTorch Optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

PyTorch Training
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")



PyTorch Training
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) ==      
                        y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%,      
               Avg loss: {test_loss:>8f} \n")



Hands-on Exercise

• ssh username@frontera.tacc.utexas.edu
• cp -r /home1/00946/zzhang/RAD-tutorial ~/

• source ~/RAD-tutorial/env.sh

mailto:username@frontera.tacc.utexas.edu


Hands-on Exercise

• https://tap.tacc.utexas.edu/

Rutgers_RTX

02:00:00

Rutgers-Training



Hands-on Exercise



Hands-on Exercise

RAD-Tutorial



Hands-on Exercise

• Go to NaturalHazardPrediction
• Run copy-data.ipynb

• Go to NaturalHazardPrediction/pytorch/
• Run torch-train-1st.ipynb



Hands-on Exercise

Image Classification with Hurricane Harvey Dataset 



Hands-on Exercise

• What is limiting the model performance?

• Model capacity
• Data
• Quality
• Imbalance among categories
• Others

2 Categories 3 Categories 5 Categories

Val_acc 92% 72% 42%
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