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Outline

e Overview of scientific research methods

* National efforts to accommodate the rising Al need

* Introduction to artificial intelligence, machine learning, deep
learning

* Hands-on with Hurricane Harvey Damage Assessment



The Progression of the Scientific Method

Empirical
Science
1st Paradigm

Observation
Experimentation

Theoretical

Science
2nd Paradigm

Scientific Laws in
Physics, Chem,

and others

Increasing speed, automation, and scale

Simulations
Molecular Dynamics

Mechanistic Models

Big Data-driven

Computational Science
Science 4th Paradigm
3rd Paradigm

Big data, machine learning
Patterns, anomalies

Visualization
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Scientific knowledge at scale
Al-generated hypotheses
Autonomous testing

Credits: lan T. Foster, UChicago



ML/DL in Science not So Long Ago

Credit: Kathy Yelick, in Monterey Data Conference, 2019




ML/DL in Science not So Long Ago

Predictions, e.g.,
transient events

Actions

Processed
Data

Raw Data



ML/DL in Science not So Long Ago

Predictions, e.g.,
transient events

Actions Domain Data

ImageNet-1K, JFT-3B,
Open Images, ALIGN,
Wikipedia, Pile

Raw Data



Traditional ML

Training Tasks
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¢ |ndividual siloed models
¢ Require task-specific training
» Lots of human supervised training

Foundation models

Massive external data
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¢ Massive multi-tasking model
e Adaptable with little or no training
e Pre-trained unsupervised learning
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. Reading comprehension with
unanswerable questions

- Reading comprehension

Al system capabilities are increasing rapidly
— Image recognition

20 /___- /
Human performance ’ //\"// .
ressrerrrrverervessersenesvesseereseves UL REIIQUNANCE, 25 the b ,e,tio 281 | Language understanding

/ -l Nuanced language interpretation
_ Handwriting recognition
— Speech recognition
Predictive reasoning
- General knowledge tests
Math problem-solving
Code generation
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The scientific method remains slow and labor-mtenswe
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Despite acceleration of some steps via HPC etc.

Google Scholar

® Articles Case law

Scientific

m Method

6verleaf

New Project

All Projects

Your Projects

Shared with you Credits: lan T. Foster, UChicago



Engage Al assistants to help overcome bottlenecks

Extraction, integration and Generative models

reasoning with knowledge Hypothesize automatically propose
at scale X new hypotheses that
\ expand discovery space

: Accelerated \

m Scientific

Method

Robotic labs automate
experimentation and bridge
digital models and physical
testing

I

Tools help identify new
questions based on needs
and gaps in knowledge

\~~
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Machine representation of Pattern and anomaly detection

knowledge leads to new integrated with simulation and

hypotheses and questions experiment extract new insights
https://doi.org/10.1038/s41524-022-00765-2

Credits: lanT. Foster, UChicago
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Foundation Model Training is Expensive

Article

Highl ” teinstruct dicti GPT-4 is OpenAl's most advanced system,
1Ign1y accurate protem structure preaiction producing safer and more useful

with AlphaFold responses

ey Ntroducing ChatGPT  R)felell= Diffusion Online

Accepted: 12 July 2021 Andrew J. B
Rishub Jain

Z:':';s::e::“"““"'vm Michal Zil We've trained a model called ChatGPT which interacts in a Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic
rushmet Helelg\VIST MO EWRME\AN R SR IV eIe VISR (Ig AN EUCER M ORIl ol 1,255 given any text input, cultivates autonomous freedom to produce incredible imagery,
ChatGPT to answer followup questions, admit its mistakes,

challenge incorrect premises, and reject inappropriate

% Check for updates

empowers billions of people to create stunning art within seconds.

requests.

* Llama 3.1 405B takes 16,384 H100 GPUs for 2 months e $2.5k - $50k (110 million parameter model)

* OPT-175B takes 1,024 A100 GPUs for 2 months e $10k - $200k (340 million parameter model)

 OpenFoldtakes 128 A100 GPUs for 11 days —
+ GPT-NeoX 20B takes 96 A100 GPUs for 30 days = ielic=ipliot (1.2 b Tion parinsenTiodc]

* Almostall popular large foundational models leverage Sharir, O, Barak Peleg, and Yoav Shoham. "The cost of

transformers training nlp models: A concise overview." arXiv preprint
arXiv:2004.08900 (2020).



Industry Investment in Al
Cyberinfrastructure

RESEARCH

IntrOdUCing the Al Research SuperCIuster - Tesla Unveils Top AV Training Supercomputer Powered by NVIDIA Stability Al, the startup behind Stable
Meta’s cutting-edge Al supercomputer for Al A100 GPUs Diffusion, raises $101M

‘Incredible’ GPU cluster powers Al development for Autopilot and full self-driving.

research
RSC: Under the hood

Kyle Wiggers 0
Stability Al has a cluster of more than 4,000 Nvidia A100 GPUs running in AN'S, which it uses to train Al
systems, including Stable Diffusion. It's quite costly to maintain — Business Insider reports that Stability

Al's operations and cloud expenditures exceeced $50 million. But Mostaque has repeatedly asserted that

the company’s R&D will enable it to train models more sfficiently going forward.

Nvidia and Microsoft team up to build
‘massive’ Al supercomputer

/ The companies hope to create
‘one of the most powerful Al
supercomputers in the world,’

! ‘ nVI DIA i capable of handling the growing

demand for generative Al.

R s 2 Microsoft _JEEEEs
total of 760 NVIDIA DGX A100 systems as its compute nodes, for a total of 6,080 GPUs — with each A100 xAI Colossus is a supercomputer built by xAI a company
Meta’s Llama 3.1405B model was trained using over 16,000 NVIDIAH100 ¢, qed by Elon Musk, to train and power the Al chatbot

GPUs. This was the first Llama model to be trained at this scale. ¢ Grok. It's located in Memphis, Tennessee, in a former
Electrolux manufacturing plant.

Explanation ¢

o ) ) Features:
* The training process for Llama 3.1 405B required a large amount of computing

power o GPUs: The supercomputer has over 100,000 Nvidia H100 GPUs, which are some of
| the most powerful processing chips available &
* Meta optimized their training infrastructure to handle the model's scale. v Lighildicooling: The GPUs:a lijlid-cooied @
» The model was trained on over 15 trillion tokens. » Networking: The supercomputer uses Nvidia Spectrum-X Ethernet networking ¢
¢ The training process took 54 days. « Storage: The supercomputer has exabytes of storage



National Investment in Al
Cyberinfrastructure

* To accommodate the increasing need of HPC for Al, the US
government has heavily invested in supercomputers:

« TACC Horizon, O(1000) GPUs, to deploy in 2026, funded by NSF LCCF
* NERSC Perlmutter, +7,000 Nvidia A100s, deployed in 2021

 ALCF Polaris, +2,000 NVIDIA A100s, deployed in 2022

* OLCF Frontier, 37,888 AMD MI250X GPUs, deployed in 2021

 ALCF Aurora, 63,744 Intel GPU Max Series, deployed in 2023

lllllll

NCSA Deltadl

8 GPU Compute



National Investment in Al
Cyberinfrastructure

'he Nati | Artificial Intelli
g ° This focus area, led by NSF, will support open Al research by This focus area, co-led by the National Institutes of Health and the
providing access to diverse Al resources via the NAIRR Pilot Portal Department of Energy, will support Al research requiring privacy
esea ‘ eso u ‘ e I o and coordinated allocations. and security-preserving resources and assemble exemplar privacy-

preserving resources.

Operational focus areas

NAIRR Open NAIRR Secure

The NAIRR Pilot aims to connect U.S. researchers and educators to computational, data, and training NAIRR Software NAIRR Classroom
resources needed to advance Al research and research that employs Al. Federal agencies are
) ) ) ) This focus area, led by NSF, will facilitate and investigate This focus area, led by NSF, will reach new communities through
collaborating with government-supported and non-governmental partners to implement the Pilot as a interoperable use of Al software, platforms, tools and services for education, training, user support and outreach
preparatory step toward an eventual full NAIRR implementation. NAIRR pilot resources.
Filters Resources
Resource Category Indiana Jetstream2 GPU v
@ Federal agency systems
Private sector computational resource NCSA Delta GPU (Delta GPU) R
Private sector model access
Other private sector contribution NCSA DeltaAl o
Resource Type
Cloud PSC Bridges-2 GPU (PSC Bridges-2 GPU) v
£ GPU Compute
Innovative / Novel Compute Purdue Anvil GPU )
CPU Compute
Service / Other SDSC Expanse GPU v
Reset Filters
TACC Frontera GPU v
TACC Lonestar6-GPU v
TACC Vista (NVIDIA GH100 Grace Hopper Superchip) Y

TAMU ACES v



A Quick Overview of Deep Learning

* 1960s — Cybernetics

e 1990s — Connectionism + Neural Networks
* 2010s — Deep Learning

* Two key factors for the on-going renaissance
* Computing capability
* Data



A Quick Overview of Deep Learning

* |Image Classification with ImageNet Dataset

ImageNet Classification Top-5 Error (%)
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From Classical ML to DL

Feature Engineering Linear Regression:
y = wx + b,
N

Loss = Z(Wxi + b —y'H)?

i=1




From Linear Regression to Neural Networks

X ] ] [l
Activation Functions
y=wx+b Sigmoid | Leaky ReLU ‘
o(z) = —1 max(0.1z, x)
14e—=
: . tanh Maxout

a = activation(y) tanh(z) - max(w] @ + by, wjz + ba)

neuron ReLU / ELU J/
T x>0

maX(O, 'fL') _ § {a(ew ~1) z<0 - - o




From Linear Regression to Neural Networks

y=wx-+b

|

a = activation(y)

neuron

y=wx-+b

Layer O Layer 1 Layer 2



From Linear Regression to Neural Networks

* Now we have labeled data

* We can calculate y and the error with label y’
* We can then update w??°

« How can we update w9, wh1, w12?




From Linear Regression to Neural Networks

* The back-propagation algoirithm
e W10 =W — A xdLoss/oW?'Y
* dLoss/OW'Y = OLoss/dy?? x dy*°/0Activate'® * dActivate'®/dy? * dy'0/oW1?

4 3 2 1
¥0 yro = W0y x0 4 p10 1
WEEN X107 Activate(y'9) 9
) w1 w20 y% 0= w20« X1+ b*0 S

Loss = 1/2 * (%0 —y")2 1

W1 ,2




From Linear Regression to Neural Networks

e Stochastic Gradient Descent

* Divides a labeled training dataset into two parts. E.g., 80% and 20%,
referred as training and validation dataset, respectively

* Trains a neural network iteratively

* Takes a mini-batch of data, e.g., 64 items out of 2,048
* An epoch is 2048/64=32 iterations/steps

* Validates the model with validation dataset
* Monitors the training loss and validation metrics, e.g., training/validation accuracy

* How many epochs is enough?



Convolutional Neural Network

* What we just saw is a multi-layer perceptron (MLP) network

* If in any layer, there is a convolution operations, it is called
convolutional neural network (4x0)

Center element of the kernel is placed over the
: SERYE (0x0)
source pixel. The source pixel is then replaced

* Often coupled with pooling operation wilh a weighied sum of el and nearby pxels. (0%

* Example applications:

* I[mage classification
* Object detection
* Autonomous driving

Source pixel
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New pixel value (destination pixel)

https://ikhlestov.github.io/pages/machine-learning/convolutions-types/



Recurrent Neural Network

* Recurrent Neural Network is another typical neural network
architecture, mainly used for ordered/sequence input

* RNNs provide a way of use information about X, ..., X, for
inferring X,

* Example applications:
* Language models, i.e. auto correction g

* Machine Translation
* Auto image captioning
* Speech Recognition

i ]
] |nle

* Autogenerating Music

RNN LSTM




Transformer Network

* State-of-the-art operator
* Proposed by Google
* Attention Mechanism

* Fundamental in Large Language
Models, e.g., BERT, GPT-3,
chatGPT, Vision Transformer,
AlphaFold

Output
Probabilities

(
(FTE o) |
Feed
Forward
e ] ™ ((Add & Norm g
el Rlilelin Multi-Head
Feed Attention
Forward 7 7 Nx
~— ]
Nix Add & Norm
r—»l Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 2 A )

— J \ v,
Positional o ¢ Positional
Encoding Encoding

Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)



Generative Adversarial Network

GENERATIVE ADVERSARIAL
NETWORKS GANs

T

©

JUDGES WICH IMAGES

REAL ARE REAL/FAKE

EXAMPLES

FAKE
IMAGES/NOISE FAKE GENERATED -

EXAMPLE DISCRIMINATOR

GENERATOR
https://pg-p.ctme.caltech.edu/blog/ai-ml/what-is-generative-adversarial-network-types
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Deep Reinforcement Learning

~| Agent
reward
rl
: . ru / r
<L Environment

action
a,

Convolutional Agent

input possible
image actions

JaU |BJnNau [BUONN|OAUOD

https://skymind.ai/wiki/deep-reinforcement-learning



Notion Recap

* Neural Network Architecture * Training and Validating
* Multi-layer Perceptron * Training Dataset
* Convolutional Neural Network * Validation/Test Dataset
* Recurrent Neural Network * Training Accuracy
* Transformer Network * Validation/Test Accuracy Training
e Activation, Loss, and LOS.S .
Optimization * Validation/Test Loss

* Epoch
* [teration/Step

* Activation Function

* Loss Function

* Back-propagation
 Gradient Descent

» Stochastic Gradient Descent



Deep Learning Software Stack

Programming PyTorch Torch JAX TensorFlow | MXNet
Lightning

Distributed DeepSpeed | torch.distrib | torch.FSDP | Accelerate | ZeRO
uted

Resource Management Slurm Kubernetes

Communication NCCL MPI Gloo

Interconnect NVLink Slingshot Infiniband RoCE




PyTorch

* You can compose a PyTorch program in four steps:
* Dataset Preparation
* Model Definition
* Optimizer Specification
* Training Instrumentation



PyTorch Dataset

e Dataset —>
Dataloader

* PyTorch has built-in
datasets, e.g.,
CIFAR10

import torch

from torch import nn

from torch.utils.data import DatalLoader

from torchvision import datasets

from torchvision.transforms import Tolensor, Lambda, Compose

train_data = datasets.CIFAR10(root=“/tmp”, train=True,
download=True, transform=Tolensor())

test_data = datasets.CIFAR10(root=“/tmp”, train=False,
download=True, transform=Tolensor())

batch_size =128

# Create data loaders.
train_dataloader = DataLoader(train_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)



PyTorch Model

* Inherits nn.Module

import torch
from torch import nn

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()

self.flatten = nn.Flatten()

self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.RelLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.RelLU()

)

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

model = Net().to(device)



PyTorch Optimizer PyTorch Training

loss_fn =nn.CrossEntropyLoss() def train(dataloader, model, loss_fn, optimizer):
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)

# Compute prediction error
pred = model(X)
loss =loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")



PyTorch Training

def train(dataloader, model, loss_fn, optimizer): def test(dataloader, model, loss_fn):
size = len(dataloader.dataset) size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader): num_batches = len(dataloader)
X,y = X.to(device), y.to(device) model.eval()
test_loss, correct=0,0
# Compute prediction error with torch.no_grad():
pred = model(X) for X, y in dataloader:
loss =loss_fn(pred, y) X,y = X.to(device), y.to(device)
pred = model(X)
# Backpropagation test_loss +=loss_fn(pred, y).item()
optimizer.zero_grad() correct += (pred.argmax(1) ==
loss.backward() y).type(torch.float).sum().item()
optimizer.step() test_loss /= num_batches
correct /=size
if batch % 100 == 0: print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%,
loss, current = loss.item(), batch * len(X) Avg loss: {test_loss:>8f}\n")

print(f'loss: {loss:>7f} [{current:>5d}/{size:>5d}]")



Hands-on Exercise

* ssh username@frontera.tacc.utexas.edu
 cp -r ’lhome1/00946/zzhang/RAD-tutorial ~/
e source ~/RAD-tutorial/env.sh



mailto:username@frontera.tacc.utexas.edu

Hands-on Exercise

« https://tap.tacc.utexas.edu/ ~ Somthew®
System Frontera
Application Jupyter notebook
Project CCR23026
Queue rtx
Nodes 1 Tasks :
Options
Job Name 20 characters max
Time Limit 02:00:00
Reservation Rutgers-Training
VNC Desktop Resolution WIDTHXHEIGHT

Rutgers RTX
u —



Hands-on Exercise

TACC | Analysis Portal  user Guide 2 jrduncan Log Out

TAP Job Status

Job: Jupyter notebook on Frontera (4175197, 2022-03-21717:28-05:00)
Status: RUNNING

Start: March 21, 2022, 5:28 p.m.
End: March 21, 2022, 5:33 p.m.
Refresh: in 873 seconds

Message:

TAP: Your session is running at https://frontera.tacc.utexas.edu:60752
/?7token=9cbad@f26752e7dd14fcf@90d6a30bbec5c15c63ed7d9e2b6267214712Fb8bad



Hands-on Exercise

: Jupyter Quit Logout
Files Running Clusters
Select items to perform actions on them. Upload 44
Notebook
Do ~ W/ Name e
Python 3
0 ¢ RAD-Tutorial -
(J O python_for_ML_training Text File
J [ tutorial-0716 Folder
. ) Terminal
(J (O UTSA_DL_Tutorial
(O & Untitled.ipynb a month ago 1.12 kB

~— &, - . . -em -



Hands-on Exercise

* Go to NaturalHazardPrediction
* Run copy-data.ipynb

* Go to NaturalHazardPrediction/pytorch/
* Run torch-train-1st.ipynb
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Hands-on Exercise

Examp

le Class Low Damage (C

0)
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Image Classification with Hurricane Harvey Dataset
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Hands-on Exercise

ENGlNEERING COMMUNITY.

* What is limiting the model performance?

* Model ca
e Data

* Quality

DESIGNSAFE-CI

Val_acc

2 Categories

92%

3 Categories

2%

5 Categories

42%

pacity

* Imbalance among categories

e Others
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