Introduction to Artificial Intelligence and Deep Learning for Science and Engineering

Zhao Zhang

Department of Electrical and Computer Engineering

Rutgers, the State University of New Jersey

Outline

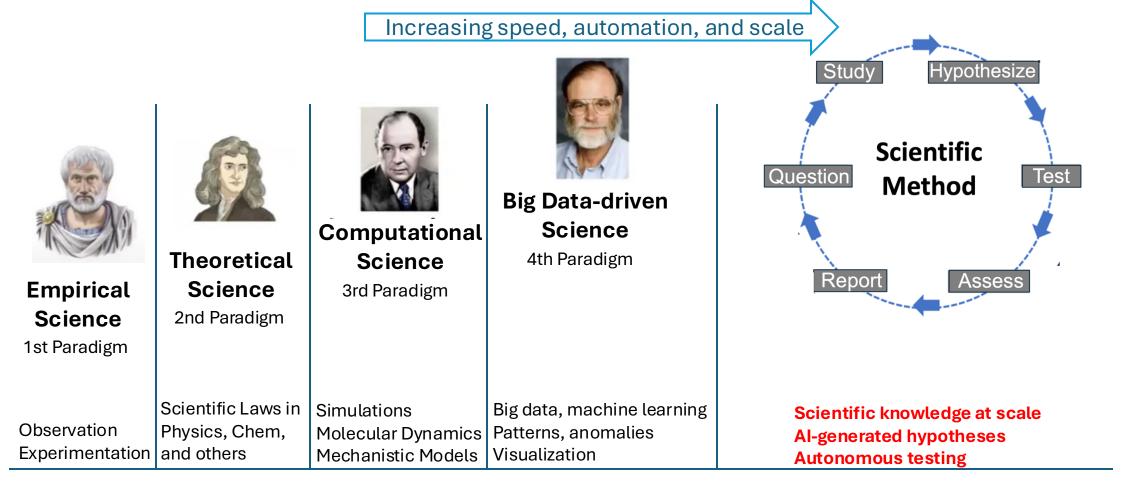
Overview of scientific research methods

National efforts to accommodate the rising AI need

• Introduction to artificial intelligence, machine learning, deep learning

Hands-on with Hurricane Harvey Damage Assessment

The Progression of the Scientific Method



ML/DL in Science not So Long Ago

Data Analytics

Classification

Regression

Clustering

Dimensionality Reduction

Inverse Problems

Model Reconstruction

Parameter Estimation

Denoising

Surrogate Models

Approximate Expensive Simulations

Approximate Experiments

Fill in Missing
Models in
Simulations

Design and Control

Optimize Design of Experiments

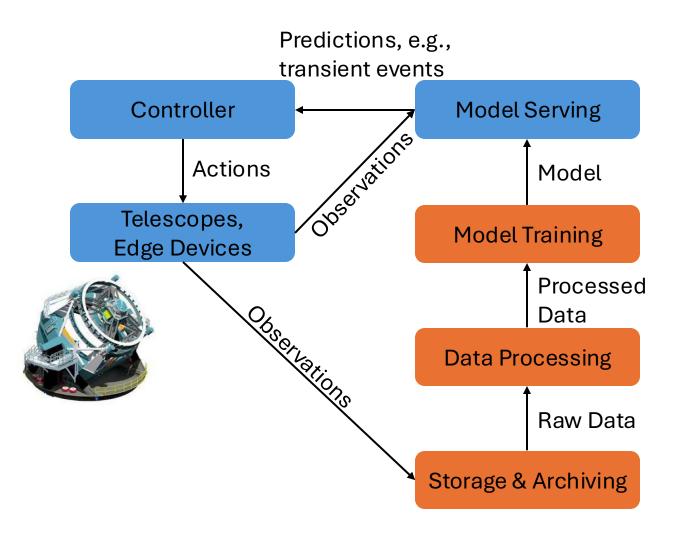
Control Instruments

Navigate State Spaces

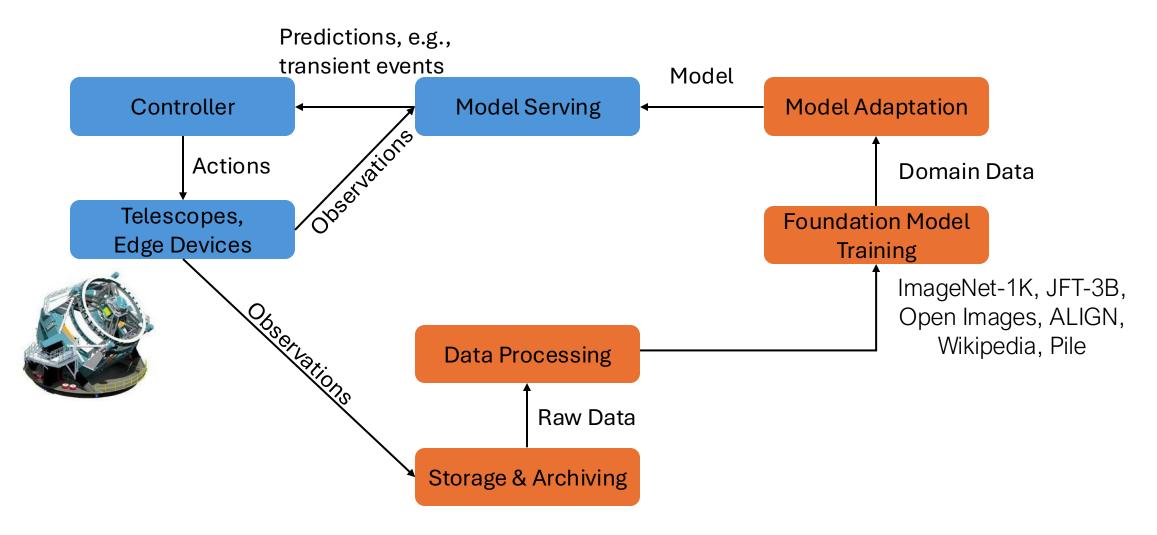
Learn from Sparse Rewards

Credit: Kathy Yelick, in Monterey Data Conference, 2019

ML/DL in Science not So Long Ago



ML/DL in Science not So Long Ago

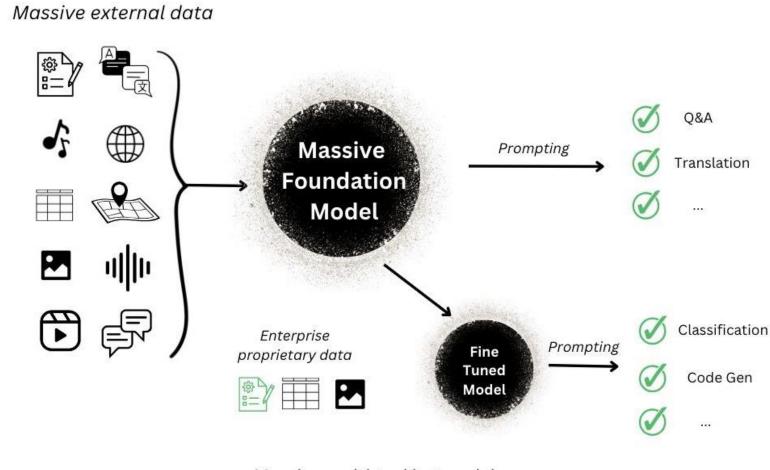


Traditional ML

Training Tasks ♣ Al1 ✓ ♣ Al2 ✓ ♣ Al3 ✓ ♣ Al4 ✓ ♣ Al5 ✓ ♣ Al6 ✓

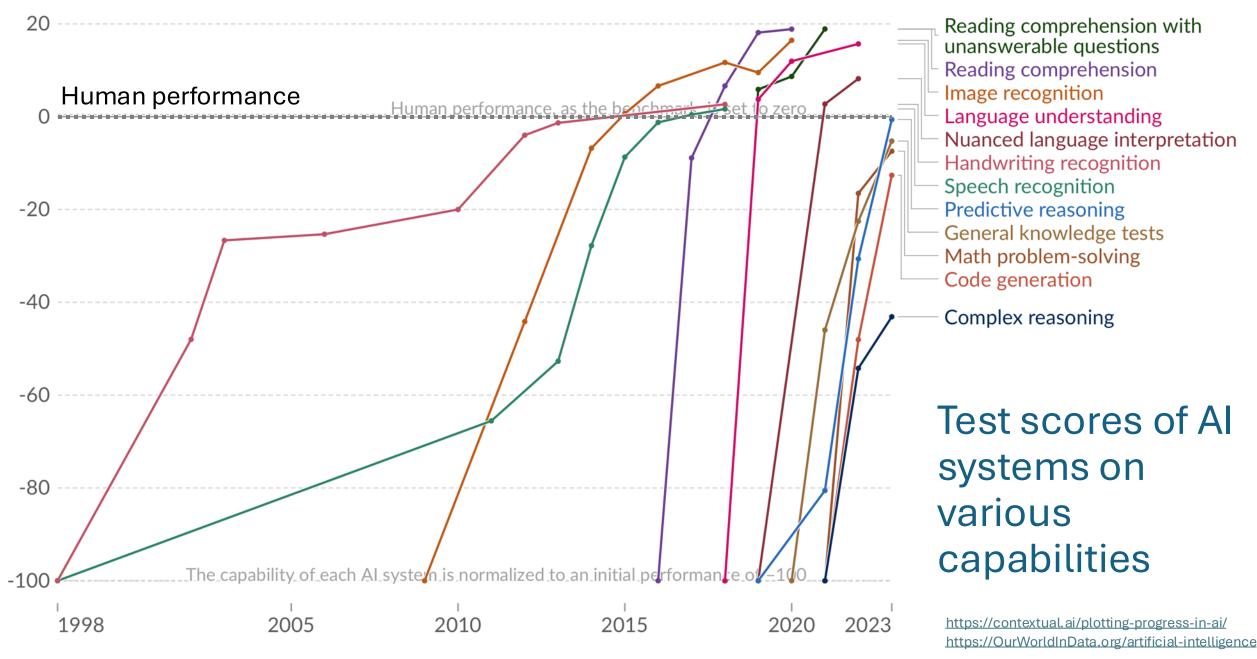
- · Individual siloed models
- · Require task-specific training
- · Lots of human supervised training

Foundation models

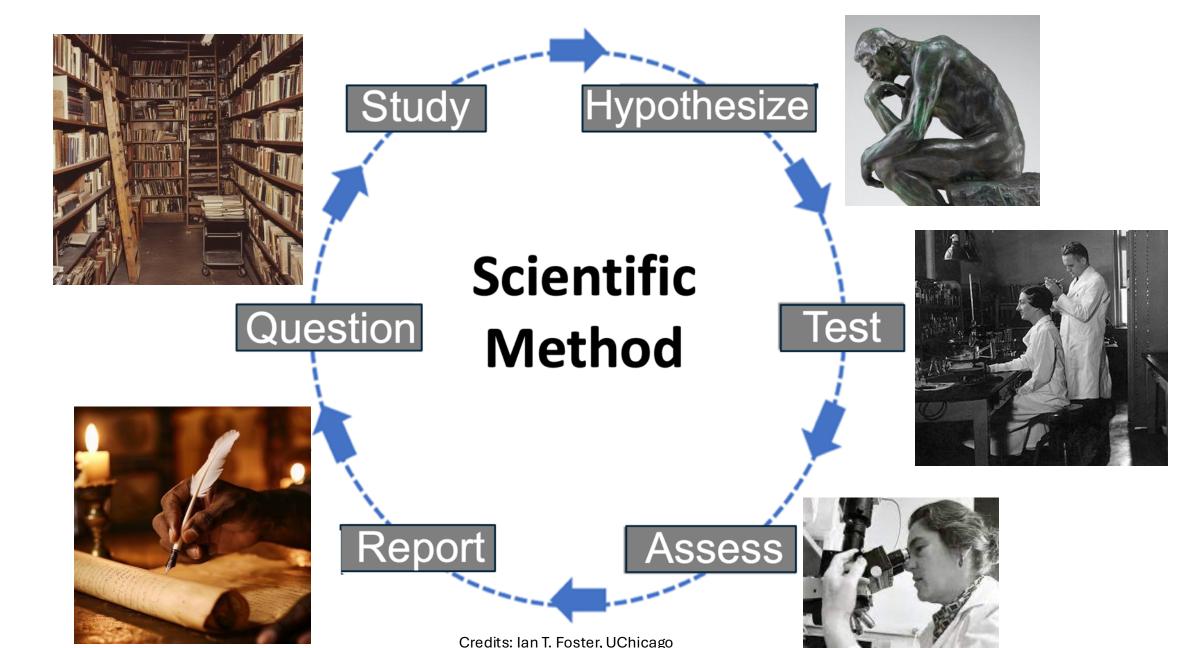


- Massive multi-tasking model
- Adaptable with little or no training
- Pre-trained unsupervised learning

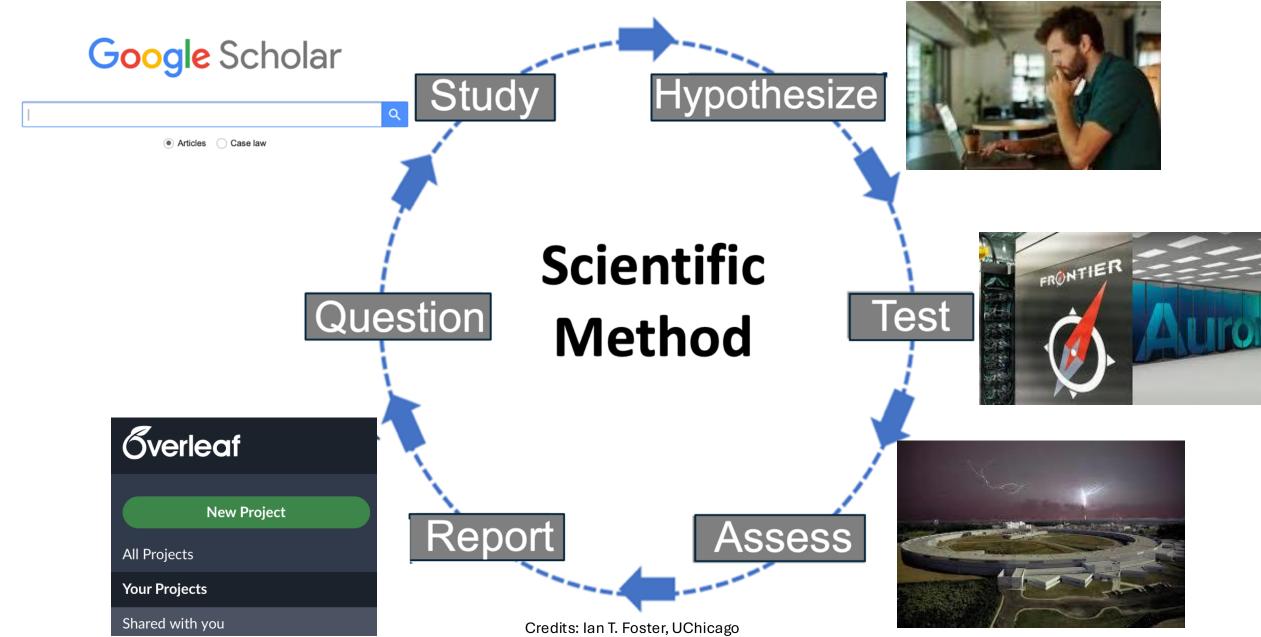
Al system capabilities are increasing rapidly



The scientific method remains slow and labor-intensive



Despite acceleration of some steps via HPC etc.



Engage AI assistants to help overcome bottlenecks

Extraction, integration and reasoning with knowledge at scale

Tools help identify new questions based on needs and gaps in knowledge

Study Hypothesize **Accelerated** Question Test Scientific Method Report Assess

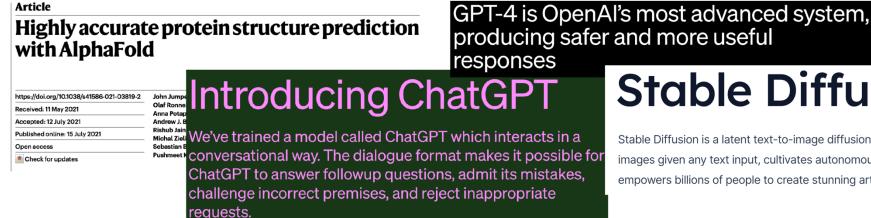
Generative models
automatically propose
new hypotheses that
expand discovery space

Robotic labs automate experimentation and bridge digital models and physical testing

Machine representation of knowledge leads to new hypotheses and questions

Pattern and anomaly detection integrated with simulation and experiment extract new insights

Foundation Model Training is Expensive



- Llama 3.1 405B takes 16,384 H100 GPUs for 2 months
- OPT-175B takes 1,024 A100 GPUs for 2 months
- OpenFold takes 128 A100 GPUs for 11 days
- GPT-NeoX 20B takes 96 A100 GPUs for 30 days
- Almost all popular large foundational models leverage transformers

Stable Diffusion Online

Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input, cultivates autonomous freedom to produce incredible imagery, empowers billions of people to create stunning art within seconds.

- \$2.5k \$50k (110 million parameter model)
- \$10k \$200k (340 million parameter model)
- \$80k \$1.6m (1.5 billion parameter model)

Sharir, Or, Barak Peleg, and Yoav Shoham. "The cost of training nlp models: A concise overview." arXiv preprint arXiv:2004.08900 (2020).

Industry Investment in Al Cyberinfrastructure

RESEARCE

Introducing the AI Research SuperCluster — Meta's cutting-edge AI supercomputer for AI research

RSC: Under the hood

Al supercomputers are built by combining multiple GPUs into compute nodes, which are then connected by a high-performance network fabric to allow fast communication between those GPUs. RSC today comprises a total of 760 NVIDIA DGX 4100 systems as its compute nodes, for a total of 6.080 GPUs — with each 4100 Tesla Unveils Top AV Training Supercomputer Powered by NVIDIA A100 GPUs

'Incredible' GPU cluster powers AI development for Autopilot and full self-driving.

Stability AI, the startup behind Stable Diffusion, raises \$101M

Kyle Wiggers @kyle_I_wiggers / 12:01 PM CDT • October 17, 2022

Common

Stability AI has a cluster of more than 4,000 Nvidia A100 GPUs running in AWS, which it uses to train AI systems, including Stable Diffusion. It's quite costly to maintain — Business Insider reports that Stability AI's operations and cloud expenditures exceeded \$50 million. But Mostaque has repeatedly asserted that the company's R&D will enable it to train models more efficiently going forward.

Nvidia and Microsoft team up to build 'massive' Al supercomputer

/ The companies hope to create one of the most powerful Al supercomputers in the world, capable of handling the growing demand for generative Al

By JESS WEATHERBED

Meta's Llama 3.1 405B model was trained using over 16,000 NVIDIA H100 founded B GPUs. This was the first Llama model to be trained at this scale.

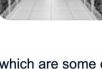
Explanation 🕖

- Meta optimized their training infrastructure to handle the model's scale.
- The model was trained on over 15 trillion tokens.
- The training process took 54 days.

xAl Colossus is a supercomputer built by xAl, a company founded by Elon Musk, to train and power the Al chatbot Grok. It's located in Memphis, Tennessee, in a former Electrolux manufacturing plant.

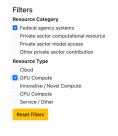
Features:

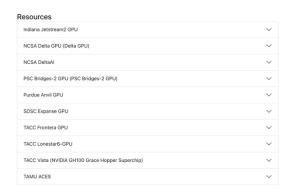
- **GPUs**: The supercomputer has over 100,000 Nvidia H100 GPUs, which are some of the most powerful processing chips available
- Liquid cooling: The GPUs are liquid-cooled
- Networking: The supercomputer uses Nvidia Spectrum-X Ethernet networking
- Storage: The supercomputer has exabytes of storage



National Investment in Al Cyberinfrastructure

- To accommodate the increasing need of HPC for AI, the US government has heavily invested in supercomputers:
 - TACC Horizon, O(1000) GPUs, to deploy in 2026, funded by NSF LCCF
 - NERSC Perlmutter, +7,000 Nvidia A100s, deployed in 2021
 - ALCF Polaris, +2,000 NVIDIA A100s, deployed in 2022
 - OLCF Frontier, 37,888 AMD MI250X GPUs, deployed in 2021
 - ALCF Aurora, 63,744 Intel GPU Max Series, deployed in 2023





National Investment in Al Cyberinfrastructure

The National Artificial Intelligence Research Resource (NAIRR) Pilot

The NAIRR Pilot aims to connect U.S. researchers and educators to computational, data, and training resources needed to advance AI research and research that employs AI. Federal agencies are collaborating with government-supported and non-governmental partners to implement the Pilot as a preparatory step toward an eventual full NAIRR implementation.

Operational focus areas

NAIRR Open

This focus area, led by NSF, will support open AI research by providing access to diverse AI resources via the NAIRR Pilot Portal and coordinated allocations.

NAIRR Software

This focus area, led by NSF, will facilitate and investigate interoperable use of AI software, platforms, tools and services for NAIRR pilot resources.

NAIRR Secure

This focus area, co-led by the National Institutes of Health and the Department of Energy, will support AI research requiring privacy and security-preserving resources and assemble exemplar privacy-preserving resources.

NAIRR Classroom

This focus area, led by NSF, will reach new communities through education, training, user support and outreach.

Filters Resource Category

- Federal agency systems
- Private sector computational resource

 Private sector model access
- Other private sector contribution

Resource Type

- Cloud
- GPU Compute
- Innovative / Novel Compute
- CPU Compute
- Service / Other

Reset Filters

Resources

Indiana Jetstream2 GPU	~
NCSA Delta GPU (Delta GPU)	~
NCSA DeltaAl	~
PSC Bridges-2 GPU (PSC Bridges-2 GPU)	~
Purdue Anvil GPU	~
SDSC Expanse GPU	~
TACC Frontera GPU	~
TACC Lonestar6-GPU	~
TACC Vista (NVIDIA GH100 Grace Hopper Superchip)	~
TAMU ACES	~

A Quick Overview of Deep Learning

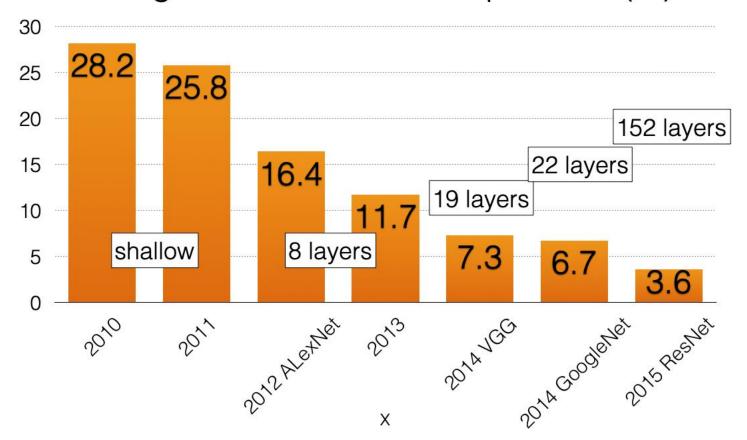
- 1960s Cybernetics
- 1990s Connectionism + Neural Networks
- 2010s Deep Learning

- Two key factors for the on-going renaissance
 - Computing capability
 - Data

A Quick Overview of Deep Learning

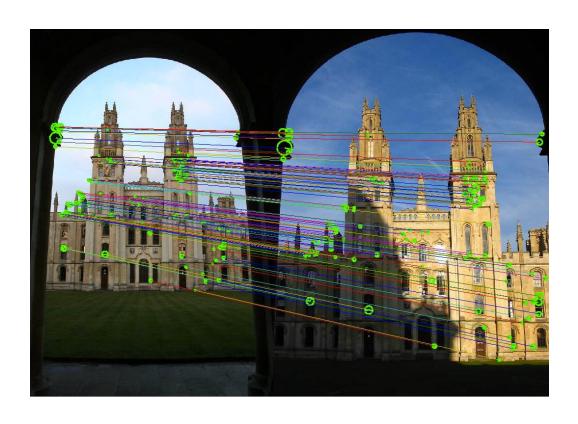
Image Classification with ImageNet Dataset

ImageNet Classification Top-5 Error (%)



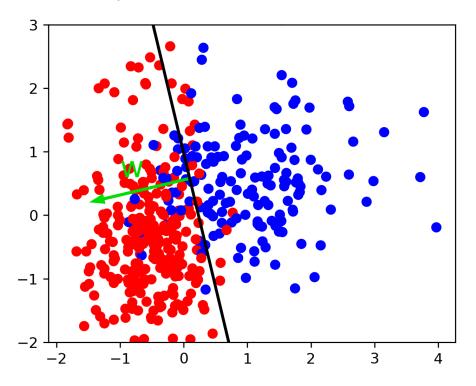
From Classical ML to DL

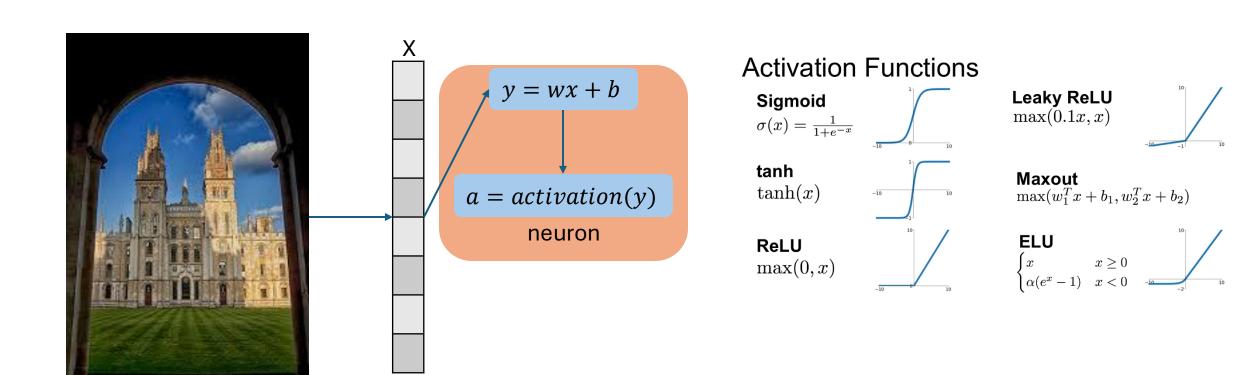
Feature Engineering

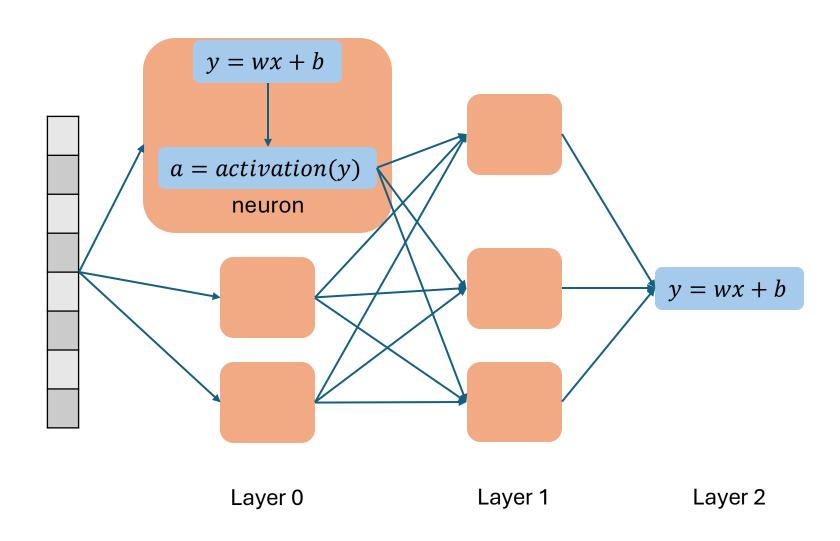


Linear Regression:

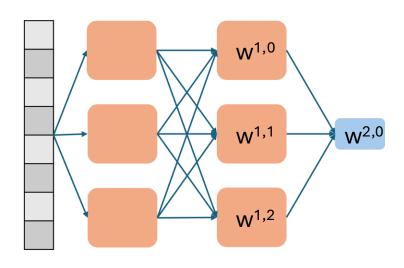
$$y = wx + b,$$
 $Loss = \sum_{i=1}^{N} (wx^{i} + b - y'^{i})^{2}$



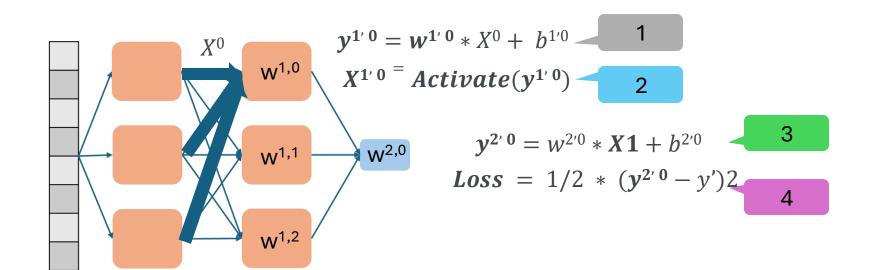




- Now we have labeled data
- We can calculate y and the error with label y'
- We can then update w^{2,0}
- How can we update w^{1,0}, w^{1,1}, w^{1,2}?



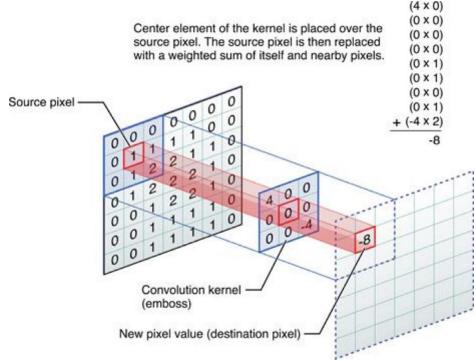
- The back-propagation algorithm
 - $W^{1'0} = W^{1'0} \lambda * \partial Loss/\partial W^{1'0}$
 - $\partial Loss/\partial W^{1'0} = \partial Loss/\partial y^{2'0} * \partial y^{2'0}/\partial Activate^{1'0} * \partial Activate^{1'0}/\partial y^{1'0} * \partial y^{1'0}/\partial W^{1'0}$



- Stochastic Gradient Descent
 - Divides a labeled training dataset into two parts. E.g., 80% and 20%, referred as training and validation dataset, respectively
 - Trains a neural network iteratively
 - Takes a mini-batch of data, e.g., 64 items out of 2,048
 - An epoch is 2048/64=32 iterations/steps
 - Validates the model with validation dataset
 - Monitors the training loss and validation metrics, e.g., training/validation accuracy
- How many epochs is enough?

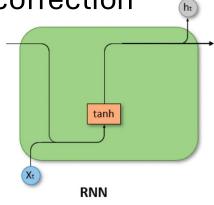
Convolutional Neural Network

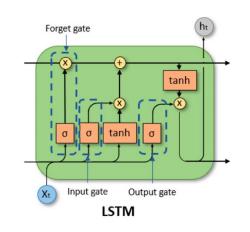
- What we just saw is a multi-layer perceptron (MLP) network
- If in any layer, there is a convolution operations, it is called convolutional neural network
 - Often coupled with pooling operation
- Example applications:
 - Image classification
 - Object detection
 - Autonomous driving

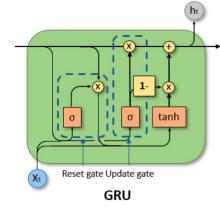


Recurrent Neural Network

- Recurrent Neural Network is another typical neural network architecture, mainly used for ordered/sequence input
- RNNs provide a way of use information about $X_{t-i}, ..., X_{t-1}$ for inferring X_t
- Example applications:
 - Language models, i.e. auto correction
 - Machine Translation
 - Auto image captioning
 - Speech Recognition
 - Autogenerating Music

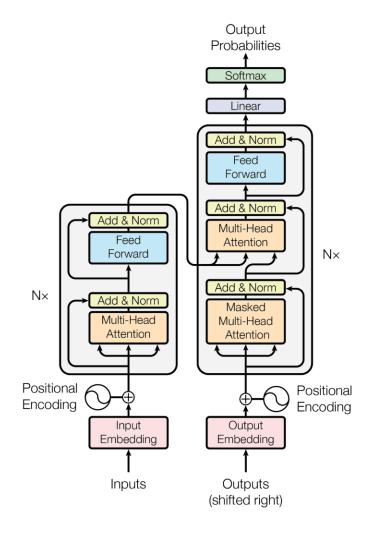






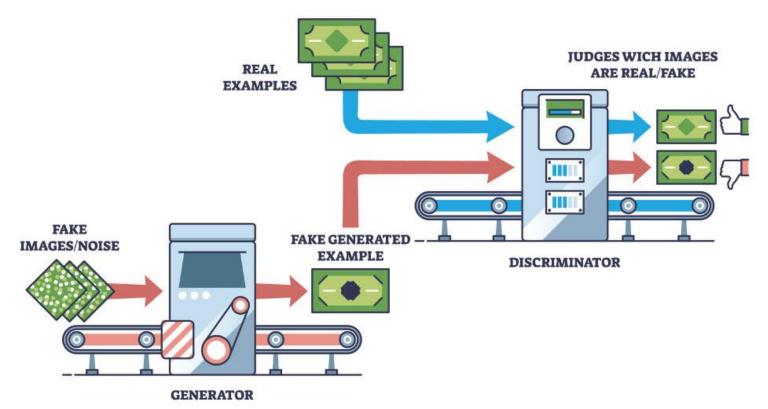
Transformer Network

- State-of-the-art operator
- Proposed by Google
- Attention Mechanism
- Fundamental in Large Language Models, e.g., BERT, GPT-3, chatGPT, Vision Transformer, AlphaFold



Generative Adversarial Network

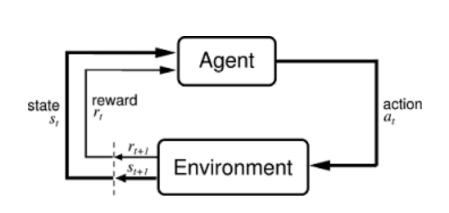
GENERATIVE ADVERSARIAL NETWORKS GANS

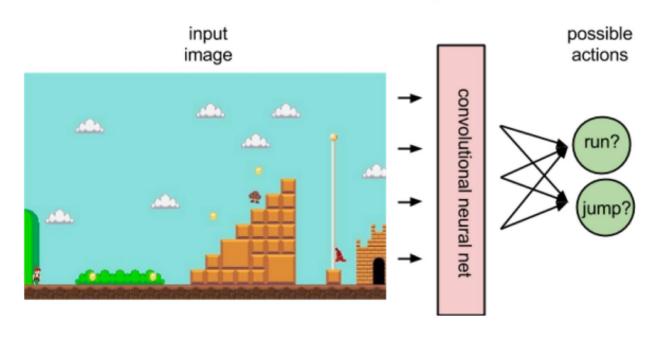


https://pg-p.ctme.caltech.edu/blog/ai-ml/what-is-generative-adversarial-network-types

Deep Reinforcement Learning

Convolutional Agent





Notion Recap

- Neural Network Architecture
 - Multi-layer Perceptron
 - Convolutional Neural Network
 - Recurrent Neural Network
 - Transformer Network
- Activation, Loss, and Optimization
 - Activation Function
 - Loss Function
 - Back-propagation
 - Gradient Descent
 - Stochastic Gradient Descent

- Training and Validating
 - Training Dataset
 - Validation/Test Dataset
 - Training Accuracy
 - Validation/Test Accuracy Training Loss
 - Validation/Test Loss
 - Epoch
 - Iteration/Step

Deep Learning Software Stack

Programming	PyTorch	Torch Lightning	ğ	JAX		Tens	sorFlov	V	MXNet
Distributed	DeepSpeed	torch.dis	strib	torch.FSDP		SDP Accelerat		9	ZeRO
Resource Management	Slurm			Kubernetes					
Communication	NCCL MPI				Gloo				
Interconnect	NVLink	Slingshot		Infiniband			Ro	CE	

PyTorch

- You can compose a PyTorch program in four steps:
 - Dataset Preparation
 - Model Definition
 - Optimizer Specification
 - Training Instrumentation

PyTorch Dataset

- Dataset —>
 Dataloader
- PyTorch has built-in datasets, e.g., CIFAR10

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose

train_data = datasets.CIFAR10(root="/tmp", train=True, download=True, transform=ToTensor())

test_data = datasets.CIFAR10(root="/tmp", train=False, download=True, transform=ToTensor())

batch_size = 128

Create data loaders.

train_dataloader = **DataLoader**(train_data, batch_size=batch_size)

test_dataloader = **DataLoader**(test_data, batch_size=batch_size)

PyTorch Model

• Inherits nn. Module

```
import torch
from torch import nn
class Net(nn.Module):
  def __init__(self):
   super(Net, self).__init__()
   self.flatten = nn.Flatten()
   self.linear_relu_stack = nn.Sequential(
     nn.Linear(28*28, 512),
     nn.ReLU(),
     nn.Linear(512, 512),
     nn.ReLU(),
     nn.Linear(512, 10),
     nn.ReLU()
 def forward(self, x):
   x = self.flatten(x)
   logits = self.linear_relu_stack(x)
   return logits
model = Net().to(device)
```

PyTorch Optimizer

```
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
```

PyTorch Training

```
def train(dataloader, model, loss_fn, optimizer):
 size = len(dataloader.dataset)
 for batch, (X, y) in enumerate(dataloader):
   X, y = X.to(device), y.to(device)
   # Compute prediction error
   pred = model(X)
   loss = loss fn(pred, y)
   # Backpropagation
   optimizer.zero_grad()
   loss.backward()
   optimizer.step()
   if batch \% 100 == 0:
     loss, current = loss.item(), batch * len(X)
     print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

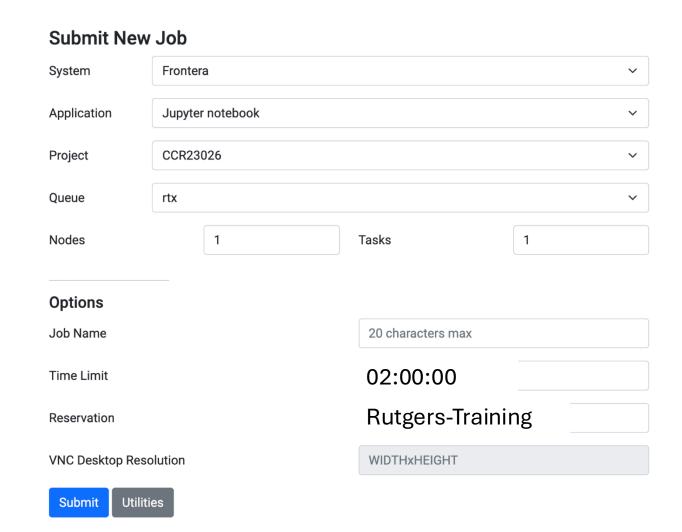
PyTorch Training

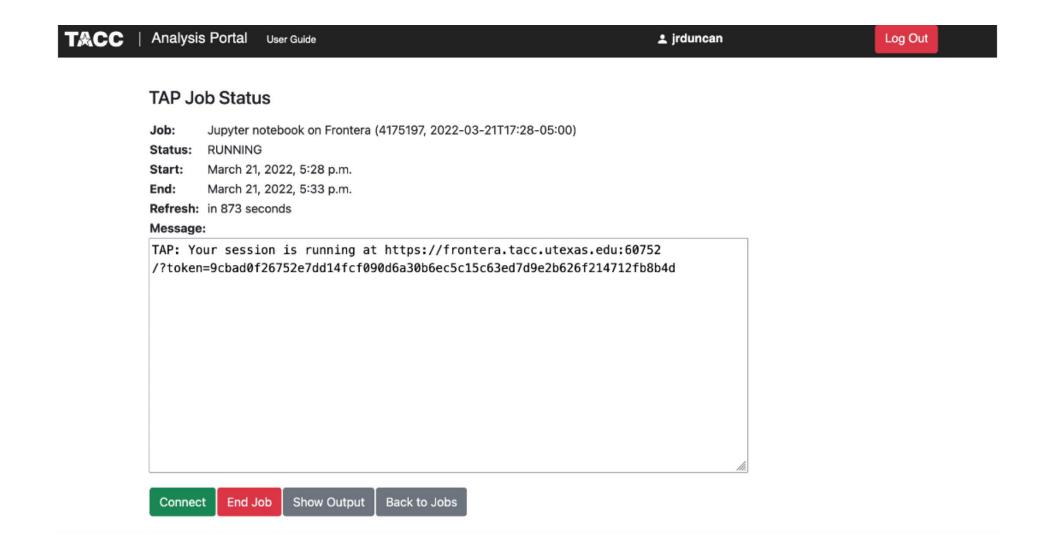
```
def train(dataloader, model, loss_fn, optimizer):
 size = len(dataloader.dataset)
 for batch, (X, y) in enumerate(dataloader):
   X, y = X.to(device), y.to(device)
   # Compute prediction error
   pred = model(X)
   loss = loss_fn(pred, y)
   # Backpropagation
   optimizer.zero_grad()
   loss.backward()
   optimizer.step()
   if batch \% 100 == 0:
     loss, current = loss.item(), batch * len(X)
     print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

```
def test(dataloader, model, loss_fn):
 size = len(dataloader.dataset)
 num_batches = len(dataloader)
 model.eval()
 test_loss, correct = 0, 0
 with torch.no_grad():
   for X, y in dataloader:
     X, y = X.to(device), y.to(device)
     pred = model(X)
     test_loss += loss_fn(pred, y).item()
     correct += (pred.argmax(1) ==
           y).type(torch.float).sum().item()
 test loss /= num batches
 correct /= size
 print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%,
       Avg loss: {test loss:>8f} \n")
```

- ssh <u>username@frontera.tacc.utexas.edu</u>
 - cp -r /home1/00946/zzhang/RAD-tutorial ~/
 - source ~/RAD-tutorial/env.sh

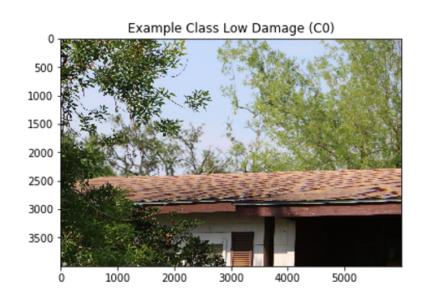
https://tap.tacc.utexas.edu/

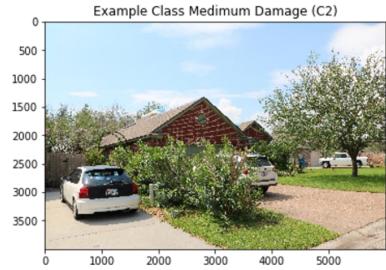




- Go to NaturalHazardPrediction
 - Run copy-data.ipynb
- Go to NaturalHazardPrediction/pytorch/
 - Run torch-train-1st.ipynb

Image Classification with Hurricane Harvey Dataset







• What is limiting the model performance?

	2 Categories	3 Categories	5 Categories
Val_acc	92%	72%	42%

- Model capacity
- Data
- Quality
- Imbalance among categories
- Others