
Introduction to
Artificial
Intelligence and
Deep Learning for
Science and
Engineering
Zhao Zhang

Department of Electrical and Computer
Engineering

Rutgers, the State University of New Jersey

Outline

• Overview of scientific research methods

• National efforts to accommodate the rising AI need

• Introduction to artificial intelligence, machine learning, deep
learning

• Hands-on with Hurricane Harvey Damage Assessment

The Progression of the Scientific Method

Scientific knowledge at scale
AI-generated hypotheses
Autonomous testing

Empirical
Science

Observation
Experimentation

1st Paradigm

Theoretical
Science

Scientific Laws in
Physics, Chem,
and others

2nd Paradigm

Computational
Science

3rd Paradigm

Simulations
Molecular Dynamics
Mechanistic Models

Big Data-driven
Science

4th Paradigm

Big data, machine learning
Patterns, anomalies
Visualization

Increasing speed, automation, and scale

Credits: Ian T. Foster, UChicago

ML/DL in Science not So Long Ago

Data Analytics

Classification

Regression

Clustering

Dimensionality
Reduction

Inverse Problems

Model
Reconstruction

Denoising

Parameter
Estimation

Surrogate Models

Approximate
Expensive

Simulations

Fill in Missing
Models in

Simulations

Approximate
Experiments

Design and Control

Optimize Design
of Experiments

Control
Instruments

Navigate State
Spaces

Learn from
Sparse Rewards

Credit: Kathy Yelick, in Monterey Data Conference, 2019

ML/DL in Science not So Long Ago

Storage & Archiving

Telescopes,
Edge Devices

Controller

Predictions, e.g.,
transient events

Model Serving

Model

Model Training

Processed
Data

Data Processing

Raw Data

Actions

ML/DL in Science not So Long Ago

Storage & Archiving

Telescopes,
Edge Devices

Controller

Predictions, e.g.,
transient events

Model Serving

Domain Data

Foundation Model
Training

ImageNet-1K, JFT-3B,

Open Images, ALIGN,

Wikipedia, PileData Processing

Raw Data

Actions

Model Adaptation
Model

Traditional ML Foundation models

Credits: Ian T. Foster, UChicago

Test scores of AI
systems on
various
capabilities

AI system capabilities are increasing rapidly

https://contextual.ai/plotting-progress-in-ai/
https://OurWorldInData.org/artificial-intelligence

Human performance

https://contextual.ai/plotting-progress-in-ai/
https://contextual.ai/plotting-progress-in-ai/
https://contextual.ai/plotting-progress-in-ai/
https://contextual.ai/plotting-progress-in-ai/
https://contextual.ai/plotting-progress-in-ai/
https://contextual.ai/plotting-progress-in-ai/
https://contextual.ai/plotting-progress-in-ai/
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence

The scientific method remains slow and labor-intensive

Credits: Ian T. Foster, UChicago

Despite acceleration of some steps via HPC etc.

Credits: Ian T. Foster, UChicago

Extraction, integration and
reasoning with knowledge
at scale

Tools help identify new
questions based on needs
and gaps in knowledge

Machine representation of
knowledge leads to new
hypotheses and questions

Generative models
automatically propose
new hypotheses that
expand discovery space

Robotic labs automate
experimentation and bridge
digital models and physical
testing

https://doi.org/10.1038/s41524-022-00765-z

Pattern and anomaly detection
integrated with simulation and
experiment extract new insights

Hypothesize

Test

Study

Report Assess

Question
Accelerated

Scientific
Method

Engage AI assistants to help overcome bottlenecks

Credits: Ian T. Foster, UChicago

https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z

Foundation Model Training is Expensive

• Llama 3.1 405B takes 16,384 H100 GPUs for 2 months
• OPT-175B takes 1,024 A100 GPUs for 2 months
• OpenFold takes 128 A100 GPUs for 11 days
• GPT-NeoX 20B takes 96 A100 GPUs for 30 days
• Almost all popular large foundational models leverage

transformers

Industry Investment in AI
Cyberinfrastructure

National Investment in AI
Cyberinfrastructure

• To accommodate the increasing need of HPC for AI, the US
government has heavily invested in supercomputers:
• TACC Horizon, O(1000) GPUs, to deploy in 2026, funded by NSF LCCF
• NERSC Perlmutter, +7,000 Nvidia A100s, deployed in 2021
• ALCF Polaris, +2,000 NVIDIA A100s, deployed in 2022
• OLCF Frontier, 37,888 AMD MI250X GPUs, deployed in 2021
• ALCF Aurora, 63,744 Intel GPU Max Series, deployed in 2023

National Investment in AI
Cyberinfrastructure

A Quick Overview of Deep Learning

• 1960s — Cybernetics
• 1990s — Connectionism + Neural Networks
• 2010s — Deep Learning

• Two key factors for the on-going renaissance
• Computing capability
• Data

A Quick Overview of Deep Learning

From Classical ML to DL
Feature Engineering Linear Regression:

𝑦 = 𝑤𝑥 + 𝑏,

𝐿𝑜𝑠𝑠 = ෍

𝑖=1

𝑁

(𝑤𝑥𝑖 + 𝑏 − 𝑦′𝑖)2

neuron

From Linear Regression to Neural Networks

X

𝑦 = 𝑤𝑥 + 𝑏

𝑎 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑦)

From Linear Regression to Neural Networks

neuron

𝑦 = 𝑤𝑥 + 𝑏

𝑎 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑦)

𝑦 = 𝑤𝑥 + 𝑏

Layer 0 Layer 1 Layer 2

From Linear Regression to Neural Networks

• Now we have labeled data
• We can calculate y and the error with label y’
• We can then update w2,0

• How can we update w1,0, w1,1, w1,2?

w2,0

w1,0

w1,1

w1,2

From Linear Regression to Neural Networks

• The back-propagation algoirithm
• 𝑊1,0 = 𝑊1,0 − 𝜆 ∗ 𝜕𝐿𝑜𝑠𝑠/𝜕𝑊1,0

• 𝜕𝐿𝑜𝑠𝑠/𝜕𝑊1,0
= 𝜕𝐿𝑜𝑠𝑠/𝜕𝑦2,0

∗ 𝜕𝑦2,0/𝜕𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒1,0

∗

𝜕𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒1,0/𝜕𝑦1,0

∗

𝜕𝑦1,0/𝜕𝑊1,0

𝒚𝟏, 𝟎 = 𝒘𝟏, 𝟎 ∗ 𝑋0 + 𝑏1,0

w1,1

w1,2

𝒚𝟐, 𝟎 = 𝑤2,0 ∗ 𝑿𝟏 + 𝑏2,0

w1,0
𝑋0

4

4

3 2 1

3

2

1

𝑿𝟏, 𝟎 =
𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒆(𝒚𝟏, 𝟎)

𝑳𝒐𝒔𝒔 = 1/2 ∗ (𝒚𝟐, 𝟎 − 𝑦’)2
w2,0

From Linear Regression to Neural Networks

• Stochastic Gradient Descent
• Divides a labeled training dataset into two parts. E.g., 80% and 20%,

referred as training and validation dataset, respectively

• Trains a neural network iteratively
• Takes a mini-batch of data, e.g., 64 items out of 2,048
• An epoch is 2048/64=32 iterations/steps

• Validates the model with validation dataset
• Monitors the training loss and validation metrics, e.g., training/validation accuracy

• How many epochs is enough?

Convolutional Neural Network

• What we just saw is a multi-layer perceptron (MLP) network
• If in any layer, there is a convolution operations, it is called

convolutional neural network
• Often coupled with pooling operation

• Example applications:
• Image classification
• Object detection
• Autonomous driving

https://ikhlestov.github.io/pages/machine-learning/convolutions-types/

Recurrent Neural Network

• Recurrent Neural Network is another typical neural network
architecture, mainly used for ordered/sequence input

• RNNs provide a way of use information about Xt-i, …, Xt-1 for
inferring Xt

• Example applications:
• Language models, i.e. auto correction
• Machine Translation
• Auto image captioning
• Speech Recognition
• Autogenerating Music

Transformer Network

• State-of-the-art operator
• Proposed by Google
• Attention Mechanism
• Fundamental in Large Language

Models, e.g., BERT, GPT-3,
chatGPT, Vision Transformer,
AlphaFold

Generative Adversarial Network

https://pg-p.ctme.caltech.edu/blog/ai-ml/what-is-generative-adversarial-network-types

Deep Reinforcement Learning

https://skymind.ai/wiki/deep-reinforcement-learning

Notion Recap

• Neural Network Architecture
• Multi-layer Perceptron
• Convolutional Neural Network
• Recurrent Neural Network
• Transformer Network

• Activation, Loss, and
Optimization
• Activation Function
• Loss Function
• Back-propagation
• Gradient Descent
• Stochastic Gradient Descent

• Training and Validating
• Training Dataset
• Validation/Test Dataset
• Training Accuracy
• Validation/Test Accuracy Training

Loss
• Validation/Test Loss
• Epoch
• Iteration/Step

Deep Learning Software Stack

Programming PyTorch Torch
Lightning

JAX TensorFlow MXNet

Distributed DeepSpeed torch.distrib
uted

torch.FSDP Accelerate ZeRO

Resource Management Slurm Kubernetes

Communication NCCL MPI Gloo

Interconnect NVLink Slingshot Infiniband RoCE

PyTorch

• You can compose a PyTorch program in four steps:
• Dataset Preparation
• Model Definition
• Optimizer Specification
• Training Instrumentation

PyTorch Dataset

• Dataset —>
Dataloader

• PyTorch has built-in
datasets, e.g.,
CIFAR10

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose

train_data = datasets.CIFAR10(root=“/tmp”, train=True,
download=True, transform=ToTensor())

test_data = datasets.CIFAR10(root=“/tmp”, train=False,
download=True, transform=ToTensor())

batch_size = 128

Create data loaders.
train_dataloader = DataLoader(train_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

PyTorch Model

• Inherits nn.Module

import torch
from torch import nn

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.flatten = nn.Flatten()
 self.linear_relu_stack = nn.Sequential(
 nn.Linear(28*28, 512),
 nn.ReLU(),
 nn.Linear(512, 512),
 nn.ReLU(),
 nn.Linear(512, 10),
 nn.ReLU()
)

 def forward(self, x):
 x = self.flatten(x)
 logits = self.linear_relu_stack(x)
 return logits

model = Net().to(device)

PyTorch Optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

PyTorch Training
def train(dataloader, model, loss_fn, optimizer):
 size = len(dataloader.dataset)
 for batch, (X, y) in enumerate(dataloader):
 X, y = X.to(device), y.to(device)

 # Compute prediction error
 pred = model(X)
 loss = loss_fn(pred, y)

 # Backpropagation
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 if batch % 100 == 0:
 loss, current = loss.item(), batch * len(X)
 print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")

PyTorch Training
def train(dataloader, model, loss_fn, optimizer):
 size = len(dataloader.dataset)
 for batch, (X, y) in enumerate(dataloader):
 X, y = X.to(device), y.to(device)

 # Compute prediction error
 pred = model(X)
 loss = loss_fn(pred, y)

 # Backpropagation
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 if batch % 100 == 0:
 loss, current = loss.item(), batch * len(X)
 print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")

def test(dataloader, model, loss_fn):
 size = len(dataloader.dataset)
 num_batches = len(dataloader)
 model.eval()
 test_loss, correct = 0, 0
 with torch.no_grad():
 for X, y in dataloader:
 X, y = X.to(device), y.to(device)
 pred = model(X)
 test_loss += loss_fn(pred, y).item()
 correct += (pred.argmax(1) ==
 y).type(torch.float).sum().item()
 test_loss /= num_batches
 correct /= size
 print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%,
 Avg loss: {test_loss:>8f} \n")

Hands-on Exercise

• ssh username@frontera.tacc.utexas.edu
• cp -r /home1/00946/zzhang/RAD-tutorial ~/

• source ~/RAD-tutorial/env.sh

mailto:username@frontera.tacc.utexas.edu

Hands-on Exercise

• https://tap.tacc.utexas.edu/

Rutgers_RTX

02:00:00

Rutgers-Training

Hands-on Exercise

Hands-on Exercise

RAD-Tutorial

Hands-on Exercise

• Go to NaturalHazardPrediction
• Run copy-data.ipynb

• Go to NaturalHazardPrediction/pytorch/
• Run torch-train-1st.ipynb

Hands-on Exercise

Image Classification with Hurricane Harvey Dataset

Hands-on Exercise

• What is limiting the model performance?

• Model capacity
• Data
• Quality
• Imbalance among categories
• Others

2 Categories 3 Categories 5 Categories

Val_acc 92% 72% 42%

	Slide 1: Introduction to Artificial Intelligence and Deep Learning for Science and Engineering
	Slide 2: Outline
	Slide 3: The Progression of the Scientific Method
	Slide 4: ML/DL in Science not So Long Ago
	Slide 5: ML/DL in Science not So Long Ago
	Slide 6: ML/DL in Science not So Long Ago
	Slide 7
	Slide 8
	Slide 9: The scientific method remains slow and labor-intensive
	Slide 10: Despite acceleration of some steps via HPC etc.
	Slide 11: Engage AI assistants to help overcome bottlenecks
	Slide 12
	Slide 13: Industry Investment in AI Cyberinfrastructure
	Slide 14: National Investment in AI Cyberinfrastructure
	Slide 15: National Investment in AI Cyberinfrastructure
	Slide 22: A Quick Overview of Deep Learning
	Slide 23
	Slide 24
	Slide 25: From Linear Regression to Neural Networks
	Slide 26: From Linear Regression to Neural Networks
	Slide 27: From Linear Regression to Neural Networks
	Slide 28: From Linear Regression to Neural Networks
	Slide 29: From Linear Regression to Neural Networks
	Slide 30: Convolutional Neural Network
	Slide 31: Recurrent Neural Network
	Slide 32: Transformer Network
	Slide 33: Generative Adversarial Network
	Slide 34: Deep Reinforcement Learning
	Slide 35: Notion Recap
	Slide 36: Deep Learning Software Stack
	Slide 37: PyTorch
	Slide 38: PyTorch Dataset
	Slide 39: PyTorch Model
	Slide 40: PyTorch Optimizer
	Slide 41
	Slide 42: Hands-on Exercise
	Slide 43: Hands-on Exercise
	Slide 44: Hands-on Exercise
	Slide 45: Hands-on Exercise
	Slide 46: Hands-on Exercise
	Slide 47: Hands-on Exercise
	Slide 48: Hands-on Exercise

