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Overview

Using LLMs in Science and Engineering
High-level overview of the workflow of GPT2 model.

Tokenization

Layers in GPT-2 model
a. Embedding layer
b. Positional encoding layer
c. Decoder layer
i. Layernorm
ii. Multi-head self-attention mechanism
iii. MLP (or feedforward layer)

5. Hands-on with OpenFold
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ML/DL in Science not So Long Ago
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transient events
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ImageNet-1K, JFT-3B,
Open Images, ALIGN,
Wikipedia, Pile




High-level overview

Texts
(str)

High-level overview of GPT-2

Texts
{num)

It

-

GPT-2 model

Embeddi ng
layer

Positional
encoding

%

-




Tokenization



Tokenizer

e Why do we need a tokenizer?
o ML/DL can only handle tensors.
o Tokenizer converts a string of words into many numbers.
e Tokenizer is not part of the GPT-2 model.
o Butitis very important!
o It determines how the model sees the strings, which can cause significant differences on
model’s inference performance.

e Tokenizer is trained from the pretraining dataset.
o So, different LLMs have their own tokenizer.



Tokenization

e One tokenizer has two parts
o Encoder and decoder. Tiktokenizer
o Encoder converts string 10 NUMIbers. o e e e et seomt

series of GPT models. GPT-2 was pre-trained on BookCorpus, @

o Decoder does the reverse ops. e e e e

pages. It's partially released in February 2019, followed by

full release of the 1.5-billion-paraseter model on Novesber S,

e The simplest tokenizer o, Sldaten
o Encode every charin a string into
UTF-8 format.
o However, this is computationally
intractable because we have
attention mechanism which has
O(n*3) time complexity.
e To try and tokenize different
texts using different tokenizers:

link

Tokae count
108

Generative-Pre-trained -Transformer-2: (GPT-2) - is-a-larg
e language sodel by OpenAl ' and: the second  in:their: fou
ndational-series-of-GPT-models. -GPT-2-was-pre-trained-
on:BeokCorpus, -a-dataset -of -over:-7,000  self-published-
fiction books-from-various:-genres,-and-trained-on-a-da
taset-of -8-million web-pages. - It's-partially released:
in:February 2019, - followed -by-full:release-of - the: 1,5~
billion-paraseter-model-on Noveaber:5,-2019. r<|endofte
xt|>
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https://tiktokenizer.vercel.app/

GPT-2’s tokenization strategy

Byte Pair Encoding (BPE) is the core algorithm behind GPT-2 tokenizer.
The source code can be found here.

The insight is very simple: Continue merging pairs of UTF-8 encoded bytes.
Here is an example:

o Suppose we have already converted every char in a string into its byte representation.
m For example, “aaabdaaabac” -> [97, 97, 97, 98, 100, 97, 97, 97, 98, 97, 99].
o  Then we group every char with its right adjacent char.
m [(aa),(aa),(ab),(bd),(da),(aa),(aa),(ab),(ba),(ac)]
m [(97,97),(97,97),(97,98),(98,100),(100,97),(97,97),(97,97),(97,98),(98,97),(97,99)]
o  We find the most frequent pair, which in this case, is (aa).
o Every (aa) pair is replaced by a new special char, say “Z”.
m ‘“aaabdaaabac’ -> “ZabdZabac”.
m We give index 256 (because UTF-8 encoded value ranges from 0 to 255) to “Z” and store this
info into a lookup table.
o Then we continue the steps above with the new str.

m Every step will create a new index, and we can choose when to stop.
11


https://github.com/openai/gpt-2/blob/master/src/encoder.py
https://en.wikipedia.org/wiki/Byte_pair_encoding

GPT-2 tokenizer details

e GPT-2 tokenizer works at the word-level, not the string-level.
o l.e. OpenAl team first use regex operations to break a string into many word-like chunks, and
then perform encoding on these chunks.

# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|"t|'re|'ve| 'm| ' LL|'d| ?\p{L}+| 2\p{N}+| 7["\s\p{LI\p{N}]+|\s+(?!\S) [\s+""")

o These are chunks instead of words because 1) there are usually numbers in the text, 2) if a
word has a leading white space, that white space is grouped with the word (e.g. “hello world” -

> “hello”, “ world”), 3) punctuations are usually separated from word, and 4) “I've” -> (“I”,“ve”.

e They ran the BPE algo for 50000 iteration on WebText, which creates a
lookup table of 50256 items.

o They added one more special token as then 50257th item: <|endoftext|>, which separates two
sentences.

e To check its lookup table: link.
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https://github.com/mz687/range_topk/blob/main/tools/gpt2-vocab.json

GPT-2 tokenizer encoding

Use regex to break a string to chunks.

For each chunk, encode it to UTF-8 format.

Use the lookup table to compress the number of tokens.

At the end of each sentence, we add the special token <|endoftext|>.
Finally, we put all of them together to form a tensor of tokens.

Note that these all happen before the pretraining.
a. Thisis what “megatron-Im/tools/preprocess_data.py” does.

o kw0~
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https://github.com/NVIDIA/Megatron-LM/blob/main/tools/preprocess_data.py

GPT-2 tokenizer decoding

e Decoding is needed when we want to generate a sentence.
e |Itis the reverse of encoding.

e Given a list of tokens (i.e. integers), we need to convert them into a string.
o Thisis also an iterative process.
o We need to decompose one token into a pair of tokens until we every token cannot be
decomposed anymore.
o Finally, we use the inverse of the lookup table to convert each token to a char.

14



Layers in GPT-2 model



How to construct the pretrianing as an
unsupervised learning problem?

16



Consider pre-training as an optimization problem

e GPT-2 was trained using unsupervised learning method.
o No manually crafted labels needed.

e Given an unsupervised corpus of tokens U ={u_1, ..., u_n}, we use a
standard language modeling objective to maximize the following likelihood:

Li(U) = Zlog Plu|w;—g. .., u;—1:09)

Where k is the context window, and P is modeled using a neural network w/
parameters \theta.

17



Another way to understand the loss func.

e To get the probability of generating a target sentence, we multiply the
conditional probability of generating each target “word”:

P(U) — H P(Tj£|’ui___{b., R ¥ P @)

e One common trick for simplif;t/ing optimization problems is to take the log of the
a product and make it a summation problem (min still be the same):

log(P(U)) = log (H P(uilwigy -y ui-1; @))

= Z log P(Uilui—ka ceey Uj—1; @)

e log(p) can be calculated from cross entropy loss (torch.nn.CrossEntropyLoss).
18



https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

How to generate prob.

e OpenAl team used a multi-layer Transformer decoder.

e This model applies a multi-headed self-attention operation over the input
context tokens followed by position-wise feedforward layers to produce an
output distribution over target tokens

ho =UW, + W,
h; = transformer_block(h;_1)Vi € [1,n]
P(u) = softmax(h, W!)
where W _e is the embedding layer, W_p is the positional encoding layer, and
there are n decoders in this model.

e Note that we need W _e both for the input and output.

19



A more concrete example

e This is an oversimplified example.
Hopefully, it can convey the basic ideas of input and output shapes.

Assume we have a training corpus as:

o “Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAl and the
second in their foundational series of GPT models.”

e \We first need to break a corpus into blocks/chunks:
o Suppose we have block size (or context size k) of 8.
o [“Generative Pre-trained Transformer 2 (GPT-2) is a large language”, “model by OpenAl and
the second in their’, “foundational series of GPT models.”]
o If we focus on the 1st chunk:
m Input: [["Generative’], ['Generative”, “ Pre-trained’], ..., ['Generative”, “ Pre-trained”, “

Transformer”, “ 27, “ (*, “GPT", *-", “2", )", “ is”, “ &@", “ large”, “ language”]]
Output: [“Pre-trained”, “Transformer”, ..., “model’].
Output is simply the next word of the input words in their original corpus.

20



GPT-2’s architecture



GPT-2's block diagram

e GPT-2’s architecture is very similar to
GPT-1.

e However, they made some corrections.

o Layer normis moved to the input of each
sub-block.

o An additional layer norm is added to the end
of decoders.

e We will cover embedding layer,

positional encoding layer, multihead

attention block, and layer norm in
more details in the following slides.
e Code can be found here.
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https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/transformer.py/

Code snippet

e A very simple implementation of the decoder layer (link)

class Block{nn.Module):

def

def

__init__(self, n_ctx, config, scale=False):

super(Block, self).__init_ ()

nx = config.n_embd

self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.attn = Attention(nx, n_ctx, config, scale)
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)

forward(self, x, layer_past=None):
a, present = self.attn(self.ln_1(x), layer_past=layer_past)

¥ =% + a
m = self.mlp(self.ln_2(x))
X=X +m

return x, present 23


https://github.com/graykode/gpt-2-Pytorch/blob/master/GPT2/model.py

Embedding layer



After tokenization...

e After converting strings to tokens, can we directly use these tokens for the
attention mechanism?

e No! We need to represent each token by a vector.

e Why bother? If two “words” have similar semantic meaning (e.g. “good” and
“nice”), we also want them to have similar mathematical representations
(maybe in a higher dimensional space).

e To know more about it, check the distributed representation of words paper.

25


https://arxiv.org/pdf/1310.4546.pdf

Example of vector representations of words

Country and Capital Vectors Projected by PCA

2 i r 1 :
China
Beijing
1.5 Russia -
Japan
1 b Moscow |
Turkey Ankara Tokyo
0.5 | B
Poland:

0 Germany: i

France Warsaw

« = Berlin
0.5 | [taly Parig =

« - e Athens
Greece
Al spain Rorme i
i : Madrid ]
1.5 [ Portugal Lisbon

_2 1 L 1 1 1 1 1

-2 -1.5 -1 0.5 o 0.5 1 1.5 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.



Embedding layer

e How to convert tokens to vectors?
This is where embedding layer comes into play.
Embedding layer is a lookup table, which converts
tokens into their vector rep.

e Tokens are indices here.

e Embedding layer is also trainable.

e Check torch.nn.Embedding to see the implementation
details.



https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

Padding

e From the example in page 18, we see that the number tokens in each
sequence is not the same.

e This is a problem for matrix operations that we will see later in the self-
attention section.

e Therefore, padding is needed.

e Padding to the right by token=0 is enough, since we only want each sentence
to have the same number of tokens.

e However, this brings up other problems when we talk about self-attention and
normalization.

28



Positional encoding layer

29



Positional encoding layer

e After the embedding layer, we need a positional
encoding layer.

e \Why? Because we want to let model have the
positional info of “words” in the string, so that we can
perform operations on them in parallel.

e There are many ways to construct the positional
encoding layer, for example, in the transformer paper,
they use cos/sin function.

e In GPT-2 paper, they use torch.nn.Embedding as the
positional encoder, making it trainable.

Embedding |

Layemorm

Feed forward

Layarnorm

Maskad multi-
head attention

Layamarm

Positional _|
encoding

Embedding |

Text tokens l 30



https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

Layer normalization

31



Why normalization?

e |t provides better model performance in terms of accuracy.
o The gradients weights in one layer are highly dependent on the outputs of the neurons in the
previous layer especially if these outputs change in a highly correlated way.
o Batchnorm alleviate this problem in the backprop process.

e The most commonly used norm is batch normalization.
o We normalize across all the training examples in the current batch.

u —
BatchNorm(u) = . o]
T+ €

1 b 1 B
_ _ 9
=5 1?—1 up 0 =4|j bg_l:(*-fb — 1)

where y and o keep the same dim as the number of features in a batch, and y
and B are trainable parameters.
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Layer normalization

e Suppose every example has d-dim

u— [

a+ e
d

_i = \JZ(H*M)

i=1

LayerNorm(u) = ~

+

ELI*—‘

where y and o are 1-dim values.

e For sentences, we perform layernorm on all the features in one “word”, which

is usually the last dim in K.shape, Q.shape, and V.shape.
e Torch document: link, and the paper.

33


https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
https://arxiv.org/abs/1607.06450

Visualization
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Batch/Power Normalization

Layer Normalization
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Why layer norm instead of batch norm?

e Sentences differ in length.
e A minibatch has sentences with different length -> y and o in batch norm

changes frequently across different mini-batches.
e U and olearned in training might not be suitable for unseenly long sentences

in inference.

35



Multi-head self-attention mechanism



Multi-head Attention - cont.

e Key (K), Value (V), and Query (Q)
are the same.

e But, after passing them through the
Linear layers (feed forward layers),
they will differ.

e K,V, and Q are splitted along the
d_model dim, where d_model is the
dim of vectors stored in embedding
layers and the output dim of each
decoder block.

Multi-Head Attention

t
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| e s
Linear Linear uj

K Q
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EwTing

[I Text tokens |
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Multi-head Attention - cont.

e After the embedding layers, the
input has three dim: (batch,
sequence_len, d_model).

e After the split, each of them has
shape: (batch, sequence_len,

num_head, d_model//num_head).

e All these dims are hyper-params.

e This multi-head split can help
reduce the computation in each
attention block significantly.

Multi-Head Attention
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Masked self-attention

Multi-Head Attention

e torch.matmul(Q,K) measures Scaled Dot-Product Attention]-
similarities between vect. in Q and K. '
e Scaling by sqgrt(d_model//num_head) ——
to avoid having all prob concentrate _ 1
on one entry in the matmul result. " Scaled Dot-Product
e Mask is a lower-triangular matrix, : ol
which masks the query from future ffm, Lf,ea, fnea,
key content. ¥
e Softmax gives the prob. ,
e This whole process can be seen as - ! “ .
, : . QK
computing the weighted average Attention(Q, K, V) = softmax(~7Z=)V

sum of vectors in V.



A more concrete example

Let's reuse the example in page 18 and assume batchsize = 1.

o Input: [[‘Generative”], [‘Generative”, “ Pre-trained”], ..., [‘Generative”, “ Pre-trained”, “

Transformer”, “ 27, “ (%, “GPT", *-", “2", *)", “is”, “ &@”, " large”, “ language™]]
Let’s ignore the linear transformation and consider Q=K=V.
Let's also ignore multihead attention for simplicity.

Let’s visualize Q, K, and V in matrix form:

 Generative Emb(0 ) Emb(0
Generative Pre-trained Emb(0

= K =V = |Generative Pre-trained Transformer
| Generative

language |

40



Matmul of Query and Key

e For torch.matmul(Q, KAT):

i > » — ——1 [ —7 — — "
Generative  Emb(0) Emb(0)  --- Emb(0) | |Generative  Generative  Generative  ---  Generative
. : : o7 T »T
Generative Pre-trained Emb(0) - Emb(0) Emb(0) Pre-trained  Pre-trained
QKT _ > ¥ + T -—-—:i-T }T 3T
| Generative Pre-trained Transformer .- Emb(0) Emb(0) Emb(0) Transformer
— —_ T T T T
| Generative language | | Emb(0) Emb(0) Emb(0) ... language |

where \vec{Emb(0)} represents the embedding results of token=0.
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Need an attention mask

e Without an attention mask, we will have an attention score from the “future’:

Generativel

—
Pre-trained !

. S : : R —
Q[0, | K T[:f 1] = |Generative Emb(0) Emb(0) - - Emh(ﬂ}} Emb(0)7
Emb(0)7

e \We want the model to guess the next “word” given only the existing context.

e In other words, vectors in key and query should not see the following texts.
Otherwise, it is cheating!

e Therefore, we need an attention mask, which should filter out all the
attention scores computed using future information.
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Attention mask

e An attention mask can be as simple as a lower
triangular matrix, where the lower entries are 1s
and the upper entries are 0s.

e Code snippet (link)

max_positions = config.max_position_embeddings
self.register_buffer(
“bias",
torch.tril{torch.ones((max_positions, max_positions), dtype=torch.bool)).viewl
1, 1, max_positions, max_positions
),
persistent=False,

5.0 ~

7.5 1

10.0 ~

12.5 ~§

15.0 A

17.5 A

5 10 15

Yellow=1, purple=0
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https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py

Some final reminders on MLP block

e The output from multi-head blocks are concatenated together.
e The activation they used in GPT-2 is GelLU instead of ReLU.

o GelU is continuous and differentiable everywhere.
def gelu(x):

return 8.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))

e Two layers in MLP block:

o Hidden size =4 x d_model.
o Output size =d_model.

e After the MLP layer, the output will have the same shape as the input, so that
we can easily pass it to the next decoder layer without worrying about dims.
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Fine-tuning

Training strategy:

1.

Fine-tune a pretrained
model (e.g. GPT-3).

Train reward model.

Perform reinforcement
learning on SFT.

Step1

Collect demonstration data,
and train a supervised policy.

A promptis

sampled from our Explain the moon
prompt dataset. landing to a 6 year old

Y

Alabeler

demonstrates the @
desired output 7
behavior. Some peaple went
to the moon...

This data is used SFT
to fine-tune GPT-3 2o

i R l%.
with supervised 57
learning 2

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model Bt

Explain the moon
outputs are landing to a 6 year old
sampled. o o

Explain graviy Explainwar.

A labeler ranks

the outputs from @
best to worst.

This data is used

to train our 2o,
.0?.?4.
reward model. Ry
0-0-0-0

Figure 2: A diagram illustrating the three steps of our method
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3/for more details

on our method.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

; »
is sampled from Wiite s story
the dataset. about frogs
The policy -
enerates 2o
9 s e -

an output. \.\sa:/

Once upon a time...

The reward model an
calculates a .0
reward for oA
Y
the output.
The reward is
r -/

used to update k
the policy

using PPO.

: (1) supervised fine-tuning (SFT), (2)
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Motivation

e Existing 2-stage retrieval has huge performance degradation in practice
o A context retriever first selects a small subset of passages that may contain the

anSwer.
m E.g. TF-IDF or BM25 matches the keywords.
m Keywords matching often fails when two sentences only contain synonyms.

o Then a machine reader examines and identifies which of them has the answer.
e This is caused by sparse vector representation.
o Such as one-hot encoding.
e However, this can be fixed by dense vector representation.
o The vector rep. of two synonyms can have high similarity.
o These dense rep. are usually learnable -> flexible and task-specific.
o But this learning process is difficult at that time.
e So, how to train a better dense embedding model using only pairs of Q&A without
additional pre-training?



Solution - DPR

® Dense Passage Retriever (DPR)

(@)
@)
@)

Also known as two-tower model.

Can provide the top-k most relevant passages in the database at run-time.
Use BERT as the encoding/embedding model.

BERT,

]
)

BERT,

{

vector

‘( Embedding ]

Maximum Innel‘ Product Search (MIPS)
\ 4

[Index vector] Context chunk
[Index vector] Context chunk

__—




Solution - DPR

e Dense encoder Ep(+) maps text/context to a d-dim dense continuous vector.
e Another encoder E(-) maps the query to a d-dim vector.

o d="768 and both BERT are base, uncased.
e The similarity is measured by the inner product of Ep(p) and E(q)

o sim(p,q) = Ep(p)"Ep(q)

e By traversing and computing the inner product between all the indexes in a
database, we can find top-k context that are most relevant.
o Have sub-linear implementation.
e Other similarity measurement method can be used
o E.g. cosine similarity (same as dot prod if unit vectors) and Euclidean distance.
e This method is now widely used in recommendation systems.



Training

® (iven atraining dataset D = {< qi,p;',pifl, o Pin >Heq.

(©)

qi: i-th query, p;": the relevant context, Di1, - Din: 1 irrelevant context.

® Target is to minimize the negative log likelihood.

(@)

m{ao?)

esim(qi,p?') +Z?=1 esim(qi,PJT) .

L(qi, pi" Pi1s ) Dip) = —log

® Negative sample selection

(@)
(@)

Every query has only one positive example but can have a large pool of negative examples.
Need to perform sampling: 1) random, 2) use result returned by BM25 (not contain answer),
3) other positive samples paired with other questions:

m Positive and negative pairs

m In-batch negatives
® Assume B examples in a mini-batch and each has a positive passage.
® Let Q and P be (B X d) matrices of question and embeddings in a batch.
® Then S = QPTis a (B x B) matrix of similarities scores, and only when i=j, (i, pj) is a pos. example.
® This creates B training example where each example has B-1 negative examples.

In-batch negative with one negative from BM25 works the best.



Dataset

e (Context/passage generation
o Extract text from English Wikipedia and break it into chunks (i.e. passages) of

100 words.
o Totally, 21,015,324 passages.  Dataset Train Dev Test
® (Question answering datasets Natural Questions 79,168 58,880 8,757 3,610
TriviaO A WebQuestions 3,417 2,474 361 2,032
o TrviaQA Curated TREC 1,353 1,125 133 694
o  WebQuestions SQuAD 78,713 70,096 8,886 10,570
o CuratedTREC
o SQuADvl.1 Table 1: Number of questions in each QA dataset. The

two columns of Train denote the original training ex-
amples in the dataset and the actual questions used for
training DPR after filtering. See text for more details.



Training setup

In-batch negative with one negative from BM25.

Batch size of 128.

Question and passage encoders training epochs
o 40 epochs for large datasets (NQ, TriviaQA, SQuAD).
o 100 epochs from small datasets (TREC, WQ).

Learning rate: 107°.

Optimizer: Adam.

Linear learning rate scheduler with warm-up.

Dropout rate: 0.1.



Results

Training Retriever Top-20 Top-100
NQ TrivikQA WQ TREC SQuAD | NQ TriviaQA WQ TREC SQuAD
None BM25 591 669 550 709 688 |73.7 767 711 841 0.0
Sinel DPR 784 794 732 798 632 | 854 850 814 89.1 772
Mg BM25+DPR | 766 798 710 852 715 | 838 845 805 927 81.3
Ml DPR 794 788 750 89.1 51.6 | 86.0 847 829 939 67.6
BM25+DPR | 780 799 747 885 66.2 | 839 844 823 94.1 78.6

Table 2: Top-20 & Top-100 retrieval accuracy on test sets, measured as the percentage of top 20/100 retrieved
passages that contain the answer. Single and Multi denote that our Dense Passage Retriever (DPR) was trained
using individial or combined training datasets (all the datasets excluding SQuAD). See text for more details.

» Single: train model on each dataset separately

* Multi: train model on all dataset combined (excluding SQuAD).

e BM25+DPR: a linear combination

» First, get 2 set of top-200 passages based on BM25 and DPR separately.
* Then rerank the union w/ a new ranking function: BM25(q, p) + 4 - sim(q,p), where 1 = 1.1.



Results

* Sample efficiency

* DPR >BM25 when use 1,000 examples for
train.

* More examples used for training leads to
higher top-k retrieval accuracy.

90

o]
o

Top-k accuracy (%)

501

40

Figure 1: Retriever top-k accuracy with different num-
bers of training examples used in our dense passage re-
triever vs BM25. The results are measured on the de-
velopment set of Natural Questions. Our DPR trained

~
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100

using 1,000 examples already outperforms BM?25.




Results

In-batch negative training

Easy and memory friendly.

Gold: negative questions are other
positives from the same training batch.
When k = 20, random, BM25, and gold
have similar performance.

W/ 1B used, gold (#N=7) improves
substantially.

Accuracy continues to improve as #N
increases.

(@)
@)

Adding one negative example from BM25

greatly improves accuracy.

BM25’s negative example is a “hard”
example because BM25 gives it high
score, but it actually does not contain the
answer.

Type #N IB Top-5 Top-20 Top-100
Random 7 X 470 643 77.8
BM25 7 X 500 633 74.8
Gold 7 X 426 631 78.3
Gold 7 v 511 69.1 80.8
Gold 31 /521 7038 82.1
Gold 127 /558 730 83.1
G+BM25Y 31432 v 650 773 84.4
GA+BM25® 31+64 v 645 764 84.0

G.4+BM25() 1274128 v 658  78.0 84.9

Table 3: Comparison of different training schemes,
measured as top-k retrieval accuracy on Natural Ques-
tions (development set). #N: number of negative
examples, IB: in-batch training. G.+BM25(1) and
G.+BM25(?) denote in-batch training with 1 or 2 ad-
ditional BM25 negatives, which serve as negative pas-
sages for all questions in the batch.



Results

e Similarity measurement

(@)

L2 and dot product gives the same performance, and both are superior to cosine.

e [.oss function

(@)

(@)

Triplet hinge loss has comparable performance to negative log likelihood.
L(q;, i, p;7) = max{0,sim(q;, p;") — sim(q;, p;") + m} (m: hyper-parameter)

e (ross-dataset generalization

(@)

DPR generalizes well when trained on one dataset and then apply it to a different
dataset.

But there are 3-5 points performance loss, compared to the best performing model
fine-tuned on that dataset.



Results

e End-to-end QA System

Training Model NQ TriviaQA WQ TREC SQuAD
Single BM25+BERT (Lee et al., 2019) 26.5 47.1 177 213 33.2
Single ORQA (Lee et al., 2019) 33.3 45.0 36.4 30.1 20.2
Single HardEM (Min et al., 2019a) 28.1 50.9 - -

Single GraphRetriever (Min et al., 2019b) 34.5 56.0 36.4 - -
56.5

Single PathRetriever (Asai et al., 2020) 326 - - -

Single REALMwix (Guu et al., 2020) 39.2 - 40.2 46.8 -

Single REALMpews (Guu et al., 2020) 404 - 40.7 429 -
BM25 32.6 52.4 299 249 38.1

Single DPR 41.5 56.8 346 25.9 29.8
BM25+DPR 39.0 57.0 352 28.0 36.7

Multi DPR 41.5 56.8 424 494 24.1
BM25+DPR 38.8 57.9 41.1 50.6 35.8

Table 4: |[End-to-end QA (Exact Match) Accuracy. IThe first block of results are copied from their cited papers.
REALMyy; an News are the same model put pretrained on Wikipedia and CC-News, respectively. Single
and Multi denote that our Dense Passage Retriever (DPR) is trained using individual or combined training datasets
(all except SQuAD). For WQ and TREC in the Multi setting, we fine-tune the reader trained on NQ.



In-context Learning
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In-Context Learning (ICL)

Definition (Dong, Q., et al., 2022): In-context learning is a paradigm that allows language models to
learn tasks given only a few examples in the form of demonstration.

It is a task adaptation strategy that does not
update the weights of the pre-trained model.

Review: Delicious food!  Sentiment: Positive

k Demonstration || Review: The food is awful. Sentiment: Negative

Examples
Review: Terrible dishes! ~ Sentiment: Negative

Template Ne
W -{ Review: Good meal!

Review: [Text] Query
Sentiment: [Label]

Sentiment:

l Input

TextT Label [ Large Language Model ]
Delicious food! 1 Parameter Freeze
The food is awful. 0
Terrible dishes! 0 J, Output
Positive

Reference: Dong, Q., et al. (2022). "A survey on in-context learing." arXiv preprint arXiv:2301.00234.



Fine-tuning VS. RAG

Dynamic Vs

Static data

External
Knowledge

Model
Customisation

Reducing

Hallucinations Transparency Recommendation

Summarization
(Specialized

Fine-tuning for

Less critical

Context offers

Domain & Style) NA No adapting style |due to context |transparency |[Fine-Tuning
RAG
Q/A System on supports Critical due to RAG (with
Organizational frequent Depending on |lack of domain |RAG offers possible
Knowledge updates Yes requirements knowledge transparency |fine-tuning)
RAG
supports Fine-tuning for |Critical due to
Customer Support |frequent adapting tone |lack of domain |RAG offers
Chatbots updates Yes and politeness |knowledge transparency |Fine-Tuning + RAG
Dynamic RAG for Critical for
Code Generation |[codebases |external Fine-tuning for |code RAG offers
System benefit RAG |codebases code style correctness transparency |Fine-Tuning + RAG
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Hands-on with OpenFold and OPT-125M
Fine-tuning



Introduction

Approaches for Protein Structure Prediction:

e Experiment - high cost of time and finance

e Computation - high throughput at a low cost
o AlphaFold (CNN-based model) - demonstrate that DNN can be a efficient solution for protein

structure prediction.
o AlphaFold 2 (Transformer-based model) - the first model to achieve atomic accuracy

Challenge:

1. Limited global batch size for accuracy guarantee. (11 days to train on 128

Google TPUv3)
2. Huge memory consumption exceeds what current GPUs can handle.

We refer AlphaFold as the transformer-based AlphaFold 2 model in the following slides.
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Background

e AlphaFold

-]

prrreit g
Input sequence

Evoformer
(48 blocks)

| |

Structure
micdule
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High
confidence

3D structure

«— Recycling (threa times)




Background

e Evoformer

l T TR A DA i e R A R

[—{ Embedding } h ] I ] ;

: Row & '

‘- - . Feed- H

g Evoformer ]»——- M E
3 J : SA( 'r‘ep;ese';\t?non MSA representation ;
S| 7 e Outer Product Mean
= [ Structure Module J
(8 blocks) : Row & :

‘- ; le Column : yeedsil & 2

' Update Forwad <

pair representation pair representation

(Ne. N, H,)

Fig. 1. The Architecture of AlphaFold Model. The amino acid sequence is encoded into MSA and pair representation after Embedding layer, then feeding
into Structure Module after 48 Evoformer blocks. In Evoformer, MSA and pair representation were processed by MSA Stack and Pair Stack, respectively. In
addition to this, there is a communication mechanism that allows information to be exchanged between the two representation.



Background

e Training Details

TABLE 1
DETAILS OF ALPHAFOLD MODEL TRAINING.

Model [nitial Training  Fine-tuning
Residues sequence N, 256 384
Number of sequences N 128 512
Batch size 128 128
Precision Bfloat16 Bfloatl6
Training samples (x10°) ~ 10 ~ 1.5

Training time ~ 7 days ~ 4 days




Thank you!
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e Megatron-LM: https://github.com/NVIDIA/Megatron-LM
e Huggingface GPT-2:
https://github.com/huggingface/transformers/blob/main/src/transformers/mode

Is/gpt2/modeling gpt2.py
e PyTorch version of OpenAl’'s GPT-2: https://github.com/graykode/gpt-2-
Pytorch/blob/master/GPT2/model.py

e |llustration of GPT-2: https://jalammar.github.io/illustrated-gpt2/
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