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Overview

1. Using LLMs in Science and Engineering

2. High-level overview of the workflow of GPT2 model.

3. Tokenization

4. Layers in GPT-2 model
a. Embedding layer

b. Positional encoding layer

c. Decoder layer

i. Layernorm

ii. Multi-head self-attention mechanism

iii. MLP (or feedforward layer)

5. Hands-on with OpenFold
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High-level overview
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Tokenization
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Tokenizer

● Why do we need a tokenizer?
○ ML/DL can only handle tensors.

○ Tokenizer converts a string of words into many numbers.

● Tokenizer is not part of the GPT-2 model.
○ But it is very important!

○ It determines how the model sees the strings, which can cause significant differences on 

model’s inference performance.

● Tokenizer is trained from the pretraining dataset.

○ So, different LLMs have their own tokenizer.
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Tokenization

● One tokenizer has two parts
○ Encoder and decoder.

○ Encoder converts string to numbers.

○ Decoder does the reverse ops.

● The simplest tokenizer
○ Encode every char in a string into 

UTF-8 format.

○ However, this is computationally 

intractable because we have 

attention mechanism which has 

O(n^3) time complexity.

● To try and tokenize different 

texts using different tokenizers: 
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https://tiktokenizer.vercel.app/


GPT-2’s tokenization strategy

● Byte Pair Encoding (BPE) is the core algorithm behind GPT-2 tokenizer.

● The source code can be found here.

● The insight is very simple: Continue merging pairs of UTF-8 encoded bytes.

● Here is an example:
○ Suppose we have already converted every char in a string into its byte representation.

■ For example, “aaabdaaabac” -> [97, 97, 97, 98, 100, 97, 97, 97, 98, 97, 99].

○ Then we group every char with its right adjacent char.

■ [(aa),(aa),(ab),(bd),(da),(aa),(aa),(ab),(ba),(ac)]

■ [(97,97),(97,97),(97,98),(98,100),(100,97),(97,97),(97,97),(97,98),(98,97),(97,99)]

○ We find the most frequent pair, which in this case, is (aa).

○ Every (aa) pair is replaced by a new special char, say “Z”. 

■ “aaabdaaabac” -> “ZabdZabac”.

■ We give index 256 (because UTF-8 encoded value ranges from 0 to 255) to “Z” and store this 

info into a lookup table.

○ Then we continue the steps above with the new str. 

■ Every step will create a new index, and we can choose when to stop.
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https://github.com/openai/gpt-2/blob/master/src/encoder.py
https://en.wikipedia.org/wiki/Byte_pair_encoding


GPT-2 tokenizer details

● GPT-2 tokenizer works at the word-level, not the string-level.
○ I.e. OpenAI team first use regex operations to break a string into many word-like chunks, and 

then perform encoding on these chunks.

○ These are chunks instead of words because 1) there are usually numbers in the text, 2) if a 

word has a leading white space, that white space is grouped with the word (e.g. “hello world” -

> “hello”, “ world”), 3) punctuations are usually separated from word, and 4) “I’ve” -> (“I”,“’ve”.

● They ran the BPE algo for 50000 iteration on WebText, which creates a 

lookup table of 50256 items.
○ They added one more special token as then 50257th item: <|endoftext|>, which separates two 

sentences.

● To check its lookup table: link.
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https://github.com/mz687/range_topk/blob/main/tools/gpt2-vocab.json


GPT-2 tokenizer encoding

1. Use regex to break a string to chunks.

2. For each chunk, encode it to UTF-8 format.

3. Use the lookup table to compress the number of tokens.

4. At the end of each sentence, we add the special token <|endoftext|>.

5. Finally, we put all of them together to form a tensor of tokens.

6. Note that these all happen before the pretraining.
a. This is what “megatron-lm/tools/preprocess_data.py” does.
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https://github.com/NVIDIA/Megatron-LM/blob/main/tools/preprocess_data.py


GPT-2 tokenizer decoding

● Decoding is needed when we want to generate a sentence. 

● It is the reverse of encoding.

● Given a list of tokens (i.e. integers), we need to convert them into a string.
○ This is also an iterative process.

○ We need to decompose one token into a pair of tokens until we every token cannot be 

decomposed anymore.

○ Finally, we use the inverse of the lookup table to convert each token to a char.
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Layers in GPT-2 model
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How to construct the pretrianing as an 

unsupervised learning problem?
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Consider pre-training as an optimization problem 

● GPT-2 was trained using unsupervised learning method.
○ No manually crafted labels needed.

● Given an unsupervised corpus of tokens U = {u_1, …, u_n}, we use a 

standard language modeling objective to maximize the following likelihood:

Where k is the context window, and P is modeled using a neural network w/ 

parameters \theta.
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Another way to understand the loss func. 

● To get the probability of generating a target sentence, we multiply the 

conditional probability of generating each target “word”:

● One common trick for simplifying optimization problems is to take the log of the 

a product and make it a summation problem (min still be the same):

● log(p) can be calculated from cross entropy loss (torch.nn.CrossEntropyLoss).
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https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


How to generate prob.

● OpenAI team used a multi-layer Transformer decoder.

● This model applies a multi-headed self-attention operation over the input 

context tokens followed by position-wise feedforward layers to produce an 

output distribution over target tokens 

where W_e is the embedding layer, W_p is the positional encoding layer, and 

there are n decoders in this model.

● Note that we need W_e both for the input and output.

19



A more concrete example

● This is an oversimplified example. 

● Hopefully, it can convey the basic ideas of input and output shapes.

● Assume we have a training corpus as:
○ “Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the 

second in their foundational series of GPT models.”

● We first need to break a corpus into blocks/chunks:
○ Suppose we have block size (or context size k) of 8.

○ [“Generative Pre-trained Transformer 2 (GPT-2) is a large language”, “model by OpenAI and 

the second in their”, “foundational series of GPT models.”]

○ If we focus on the 1st chunk:

■ Input: [[“Generative”], [“Generative”, “ Pre-trained”], …, [“Generative”, “ Pre-trained”,  “ 

Transformer”, “ 2”, “ (“, “GPT”, “-”, “2”, “)”, “ is”, “ a”, “ large”, “ language”]]

■ Output: [“Pre-trained”, “Transformer”, …, “model”]. 

■ Output is simply the next word of the input words in their original corpus. 20



GPT-2’s architecture
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GPT-2’s block diagram

● GPT-2’s architecture is very similar to 

GPT-1.

● However, they made some corrections.
○ Layer norm is moved to the input of each 

sub-block.

○ An additional layer norm is added to the end 

of decoders.

● We will cover embedding layer, 

positional encoding layer, multihead 

attention block, and layer norm in 

more details in the following slides.

● Code can be found here.
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Post-layernorm residual Pre-layernorm residual

https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/transformer.py/


Code snippet 
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● A very simple implementation of the decoder layer (link)

https://github.com/graykode/gpt-2-Pytorch/blob/master/GPT2/model.py


Embedding layer
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After tokenization…

● After converting strings to tokens, can we directly use these tokens for the 

attention mechanism?

● No! We need to represent each token by a vector.

● Why bother? If two “words” have similar semantic meaning (e.g. “good” and 

“nice”), we also want them to have similar mathematical representations 

(maybe in a higher dimensional space).

● To know more about it, check the distributed representation of words paper.
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https://arxiv.org/pdf/1310.4546.pdf


Example of vector representations of words
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Embedding layer

● How to convert tokens to vectors?

● This is where embedding layer comes into play.

● Embedding layer is a lookup table, which converts 

tokens into their vector rep.

● Tokens are indices here.

● Embedding layer is also trainable.

● Check torch.nn.Embedding to see the implementation 

details. 
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https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html


Padding

● From the example in page 18, we see that the number tokens in each 

sequence is not the same.

● This is a problem for matrix operations that we will see later in the self-

attention section.

● Therefore, padding is needed.

● Padding to the right by token=0 is enough, since we only want each sentence 

to have the same number of tokens. 

● However, this brings up other problems when we talk about self-attention and 

normalization.
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Positional encoding layer
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Positional encoding layer

● After the embedding layer, we need a positional 

encoding layer.

● Why? Because we want to let model have the 

positional info of “words” in the string, so that we can 

perform operations on them in parallel. 

● There are many ways to construct the positional 

encoding layer, for example, in the transformer paper, 

they use cos/sin function.

● In GPT-2 paper, they use torch.nn.Embedding as the 

positional encoder, making it trainable.
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https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html


Layer normalization
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Why normalization?

● It provides better model performance in terms of accuracy. 
○ The gradients weights in one layer are highly dependent on the outputs of the neurons in the 

previous layer especially if these outputs change in a highly correlated way.

○ Batchnorm alleviate this problem in the backprop process.

● The most commonly used norm is batch normalization.
○ We normalize across all the training examples in the current batch.

where μ and σ keep the same dim as the number of features in a batch, and γ

and β are trainable parameters.
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Layer normalization

● Suppose every example has d-dim

where μ and σ are 1-dim values.

● For sentences, we perform layernorm on all the features in one “word”, which 

is usually the last dim in K.shape, Q.shape, and V.shape.

● Torch document: link, and the paper.
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https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
https://arxiv.org/abs/1607.06450


Visualization
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Why layer norm instead of batch norm?

● Sentences differ in length.

● A minibatch has sentences with different length -> μ and σ in batch norm 

changes frequently across different mini-batches.

● μ and σ learned in training might not be suitable for unseenly long sentences 

in inference.
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Multi-head self-attention mechanism
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Multi-head Attention - cont. 

37

● Key (K), Value (V), and Query (Q) 

are the same.

● But, after passing them through the 

Linear layers (feed forward layers), 

they will differ.

● K, V, and Q are splitted along the 

d_model dim, where d_model is the 

dim of vectors stored in embedding 

layers and the output dim of each 

decoder block.



Multi-head Attention - cont. 
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● After the embedding layers, the 

input has three dim: (batch, 

sequence_len, d_model).

● After the split, each of them has 

shape: (batch, sequence_len, 

num_head, d_model//num_head).

● All these dims are hyper-params.

● This multi-head split can help 

reduce the computation in each 

attention block significantly.



Masked self-attention

● torch.matmul(Q,K) measures 

similarities between vect. in Q and K.

● Scaling by sqrt(d_model//num_head) 

to avoid having all prob concentrate 

on one entry in the matmul result.

● Mask is a lower-triangular matrix, 

which masks the query from future 

key content.

● Softmax gives the prob.

● This whole process can be seen as 

computing the weighted average 

sum of vectors in V.
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A more concrete example

● Let’s reuse the example in page 18 and assume batchsize = 1.
○ Input: [[“Generative”], [“Generative”, “ Pre-trained”], …, [“Generative”, “ Pre-trained”,  “ 

Transformer”, “ 2”, “ (“, “GPT”, “-”, “2”, “)”, “ is”, “ a”, “ large”, “ language”]] 

● Let’s ignore the linear transformation and consider Q=K=V.

● Let’s also ignore multihead attention for simplicity.

● Let’s visualize Q, K, and V in matrix form:
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Matmul of Query and Key 

● For torch.matmul(Q, K^T):

where \vec{Emb(0)} represents the embedding results of token=0.
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Need an attention mask

● Without an attention mask, we will have an attention score from the “future”:

● We want the model to guess the next “word” given only the existing context.

● In other words, vectors in key and query should not see the following texts. 

Otherwise, it is cheating!

● Therefore, we need an attention mask, which should filter out all the 

attention scores computed using future information.
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Attention mask

● An attention mask can be as simple as a lower 

triangular matrix, where the lower entries are 1s 

and the upper entries are 0s.

● Code snippet (link)
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Yellow=1, purple=0

https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py


Some final reminders on MLP block

● The output from multi-head blocks are concatenated together.

● The activation they used in GPT-2 is GeLU instead of ReLU.
○ GeLU is continuous and differentiable everywhere.

● Two layers in MLP block:
○ Hidden size = 4 x d_model.

○ Output size = d_model.

● After the MLP layer, the output will have the same shape as the input, so that 

we can easily pass it to the next decoder layer without worrying about dims.
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Training strategy:

1. Fine-tune a pretrained 

model (e.g. GPT-3).

2. Train reward model.

3. Perform reinforcement 

learning on SFT.

Fine-tuning



Retrieval Augmented Generation

• How to design such

embedding model?

• How to generate vector

index?

• How to determine which

data chunk should be

retrieved?



Motivation

● Existing 2-stage retrieval has huge performance degradation in practice
○ A context retriever first selects a small subset of passages that may contain the 

answer.
■ E.g. TF-IDF or BM25 matches the keywords.
■ Keywords matching often fails when two sentences only contain synonyms.

○ Then a machine reader examines and identifies which of them has the answer.

● This is caused by sparse vector representation.
○ Such as one-hot encoding.

● However, this can be fixed by dense vector representation.
○ The vector rep. of two synonyms can have high similarity.
○ These dense rep. are usually learnable -> flexible and task-specific.
○ But this learning process is difficult at that time.

● So, how to train a better dense embedding model using only pairs of Q&A without 

additional pre-training?



Solution - DPR

● Dense Passage Retriever (DPR)
○ Also known as two-tower model.

○ Can provide the top-k most relevant passages in the database at run-time.

○ Use BERT as the encoding/embedding model.

Query 𝐵𝐸𝑅𝑇𝑄
Embedding

vector

Context

𝐵𝐸𝑅𝑇𝑃

[Index vector] Context chunk

Context

[Index vector] Context chunk

Maximum Inner Product Search (MIPS)

Run-

time

Off-line



Solution - DPR

● Dense encoder 𝐸𝑃(∙) maps text/context to a d-dim dense continuous vector.
● Another encoder 𝐸𝑄(∙) maps the query to a d-dim vector.

○ d = 768 and both BERT are base, uncased.

● The similarity is measured by the inner product of 𝐸𝑃(𝑝) and 𝐸𝑄(𝑞)

○ sim 𝑝, 𝑞 = 𝐸𝑃(𝑝)
𝑇𝐸𝑄(𝑞)

● By traversing and computing the inner product between all the indexes in a 
database, we can find top-k context that are most relevant.

○ Have sub-linear implementation.

● Other similarity measurement method can be used
○ E.g. cosine similarity (same as dot prod if unit vectors) and Euclidean distance.

● This method is now widely used in recommendation systems.



Training 

● Given a training dataset 𝒟 = {< 𝑞𝑖, 𝑝𝑖
+, 𝑝𝑖,1

− , … , 𝑝𝑖,𝑛
− >}𝑖=1

𝑚 .

○ 𝑞𝑖: i-th query, 𝑝𝑖
+: the relevant context, 𝑝𝑖,1

− , … , 𝑝𝑖,𝑛
− : n irrelevant context.

● Target is to minimize the negative log likelihood.

○ 𝐿 𝑞𝑖 , 𝑝𝑖
+, 𝑝𝑖,1

− , … , 𝑝𝑖,𝑛
− = −log

𝑒
𝑠𝑖𝑚 𝑞𝑖,𝑝𝑖

+

𝑒
sim 𝑞𝑖,𝑝𝑖

+
+σ𝑗=1

𝑛 𝑒
𝑠𝑖𝑚 𝑞𝑖,𝑝𝑗

− .

● Negative sample selection
○ Every query has only one positive example but can have a large pool of negative examples.
○ Need to perform sampling: 1) random, 2) use result returned by BM25 (not contain answer), 

3) other positive samples paired with other questions:
■ Positive and negative pairs
■ In-batch negatives

● Assume B examples in a mini-batch and each has a positive passage.

● Let Q and P be (𝐵 × 𝑑) matrices of question and embeddings in a batch.

● Then 𝐒 = 𝐐𝐏𝑇is a (𝐵 × 𝐵) matrix of similarities scores, and only when i=j, (𝑞𝑖, 𝑝𝑗) is a pos. example.

● This creates B training example where each example has B-1 negative examples. 

● In-batch negative with one negative from BM25 works the best.



Dataset 

● Context/passage generation
○ Extract text from English Wikipedia and break it into chunks (i.e. passages) of 

100 words.
○ Totally, 21,015,324 passages.

● Question answering datasets
○ Natural Questions (NQ)
○ TriviaQA
○ WebQuestions
○ CuratedTREC
○ SQuAD v1.1



Training setup 

● In-batch negative with one negative from BM25.

● Batch size of 128.
● Question and passage encoders training epochs

○ 40 epochs for large datasets (NQ, TriviaQA, SQuAD).

○ 100 epochs from small datasets (TREC, WQ).

● Learning rate: 10−5.
● Optimizer: Adam.
● Linear learning rate scheduler with warm-up.

● Dropout rate: 0.1.



Results

• Single: train model on each dataset separately

• Multi: train model on all dataset combined (excluding SQuAD).

• BM25+DPR: a linear combination 
• First, get 2 set of top-200 passages based on BM25 and DPR separately. 

• Then rerank the union w/ a new ranking function: BM25 𝑞, 𝑝 + 𝜆 ⋅ sim(𝑞, 𝑝), where 𝜆 = 1.1. 



Results

• Sample efficiency

• DPR > BM25 when use 1,000 examples for 
train.

• More examples used for training leads to 
higher top-k retrieval accuracy.



Results

● In-batch negative training
○ Easy and memory friendly.

○ Gold: negative questions are other 

positives from the same training batch.

○ When 𝑘 ≥ 20, random, BM25, and gold 

have similar performance.
○ W/ IB used, gold (#N=7) improves 

substantially.

○ Accuracy continues to improve as #N 

increases.

○ Adding one negative example from BM25 
greatly improves accuracy.

■ BM25’s negative example is a “hard” 

example because BM25 gives it high 
score, but it actually does not contain the 

answer.



● Similarity measurement
○ L2 and dot product gives the same performance, and both are superior to cosine.

● Loss function
○ Triplet hinge loss has comparable performance to negative log likelihood.
○ 𝐿 𝑞𝑖, 𝑝𝑖

+, 𝑝𝑖
− = max{0, sim 𝑞𝑖, 𝑝𝑖

− − sim 𝑞𝑖, 𝑝𝑖
+ +𝑚} (m: hyper-parameter)

● Cross-dataset generalization
○ DPR generalizes well when trained on one dataset and then apply it to a different 

dataset.
○ But there are 3-5 points performance loss, compared to the best performing model 

fine-tuned on that dataset.

Results



● End-to-end QA System

Results



In-context Learning
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In-Context Learning (ICL)

Definition (Dong, Q., et al., 2022): In-context learning is a paradigm that allows language models to 

learn tasks given only a few examples in the form of demonstration. 

Reference: Dong, Q., et al. (2022). "A survey on in-context learning." arXiv preprint arXiv:2301.00234.

It is a task adaptation strategy that does not 

update the weights of the pre-trained model.



Fine-tuning VS. RAG
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Hands-on with OpenFold and OPT-125M 

Fine-tuning
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Introduction

Approaches for Protein Structure Prediction:

● Experiment - high cost of time and finance

● Computation - high throughput at a low cost
○ AlphaFold (CNN-based model) - demonstrate that DNN can be a efficient solution for protein 

structure prediction.

○ AlphaFold 2 (Transformer-based model) - the first model to achieve atomic accuracy

Challenge:

1. Limited global batch size for accuracy guarantee. (11 days to train on 128 

Google TPUv3)

2. Huge memory consumption exceeds what current GPUs can handle.

We refer AlphaFold as the transformer-based AlphaFold 2 model in the following slides.



AlphaFold
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Background

● AlphaFold



Background

● Evoformer



Background

● Training Details



Thank you!
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● Huggingface GPT-2: 

https://github.com/huggingface/transformers/blob/main/src/transformers/mode
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